时间:2021-05-23
layer的两个函数:
get_weights(), set_weights(weights)。
详情请参考about-keras-layers。
补充知识:Keras层的共同函数
关于Keras层:
所有Keras层都有很多共同的函数:
layer.get_weights(): # 以Numpy矩阵的形式返回层的权重。
layer.set_weights(weights): # 从Numpy矩阵中设置层的权重(与get_weights的输出形状相同)。
layer.get_config(): # 返回包含层配置的字典。
图层的重置:
layer = Dense(32)config = layer.get_config()reconstructed_layer = Dense.from_config(config)#from keras import layersconfig = layer.get_config()layer = layers.deserialize({'class_name': layer.__class__.__name__, 'config': config})如果一个层具有单个节点, (i.e. 如果它不是共享层), 可以得到它的输入张量,输出张量,输入尺寸和输出尺寸:
layer.inputlayer.outputlayer.input_shapelayer.output_shape如果层有多个节点 (层节点和共享层), 可以使用以下函数: 要指明再哪个节点处获得张量,哪个节点处获得张量尺寸。
layer.get_input_at(node_index)layer.get_output_at(node_index)layer.get_input_shape_at(node_index)layer.get_output_shape_at(node_index)以上这篇Keras设置以及获取权重的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
关于保存h5模型、权重网上的示例非常多,也非常简单。主要有以下两个函数:1、keras.models.load_model()读取网络、权重2、keras.mo
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型实现效果准备工作在开始之前先要安装keras和tens
摘要:纯NumPy代码从头实现简单的神经网络。Keras、TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型。前不久,我曾写
1.keras新版本中加入多GPU并行使用的函数下面程序段即可实现一个或多个GPU加速:注意:使用多GPU加速时,Keras版本必须是Keras2.0.9以上版
在进行keras网络计算时,有时候需要获取输入张量的维度来定义自己的层。但是由于keras是一个封闭的接口。因此在调用由于是张量不能直接用numpy里的A.sh