时间:2021-05-23
python3.6
threading和multiprocessing
四核+三星250G-850-SSD
自从用多进程和多线程进行编程,一致没搞懂到底谁更快。网上很多都说python多进程更快,因为GIL(全局解释器锁)。但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图)
这里先来一张程序的结果图,说明线程和进程谁更快
一些定义
并行是指两个或者多个事件在同一时刻发生。并发是指两个或多个事件在同一时间间隔内发生
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一个程序的执行实例就是一个进程。
实现过程
而python里面的多线程显然得拿到GIL,执行code,最后释放GIL。所以由于GIL,多线程的时候拿不到,实际上,它是并发实现,即多个事件,在同一时间间隔内发生。
但进程有独立GIL,所以可以并行实现。因此,针对多核CPU,理论上采用多进程更能有效利用资源。
现实问题
在网上的教程里面,经常能见到python多线程的身影。比如网络爬虫的教程、端口扫描的教程。
这里拿端口扫描来说,大家可以用多进程实现下面的脚本,会发现python多进程更快。那么不就是和我们分析相悖了吗?
import sys,threadingfrom socket import *host = "127.0.0.1" if len(sys.argv)==1 else sys.argv[1]portList = [i for i in range(1,1000)]scanList = []lock = threading.Lock()print('Please waiting... From ',host)def scanPort(port): try: tcp = socket(AF_INET,SOCK_STREAM) tcp.connect((host,port)) except: pass else: if lock.acquire(): print('[+]port',port,'open') lock.release() finally: tcp.close()for p in portList: t = threading.Thread(target=scanPort,args=(p,)) scanList.append(t)for i in range(len(portList)): scanList[i].start()for i in range(len(portList)): scanList[i].join()谁更快
因为python锁的问题,线程进行锁竞争、切换线程,会消耗资源。所以,大胆猜测一下:
在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率。
大家看一下下面的代码:
import timeimport threadingimport multiprocessingmax_process = 4max_thread = max_processdef fun(n,n2): #cpu密集型 for i in range(0,n): for j in range(0,(int)(n*n*n*n2)): t = i*jdef thread_main(n2): thread_list = [] for i in range(0,max_thread): t = threading.Thread(target=fun,args=(50,n2)) thread_list.append(t) start = time.time() print(' [+] much thread start') for i in thread_list: i.start() for i in thread_list: i.join() print(' [-] much thread use ',time.time()-start,'s')def process_main(n2): p = multiprocessing.Pool(max_process) for i in range(0,max_process): p.apply_async(func = fun,args=(50,n2)) start = time.time() print(' [+] much process start') p.close()#关闭进程池 p.join()#等待所有子进程完毕 print(' [-] much process use ',time.time()-start,'s')if __name__=='__main__': print("[++]When n=50,n2=0.1:") thread_main(0.1) process_main(0.1) print("[++]When n=50,n2=1:") thread_main(1) process_main(1) print("[++]When n=50,n2=10:") thread_main(10) process_main(10)结果如下:
可以看出来,当对cpu使用率越来越高的时候(代码循环越多的时候),差距越来越大。验证我们猜想
CPU和IO密集型
1、CPU密集型代码(各种循环处理、计数等等)
2、IO密集型代码(文件处理、网络爬虫等)
判断方法:
1、直接看CPU占用率, 硬盘IO读写速度
2、计算较多->CPU;时间等待较多(如网络爬虫)->IO
3、请自行百度
以上这篇python多进程和多线程究竟谁更快(详解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python多线程和多进程区别是: 1、多线程可以共享全局变量,而多进程是不能的。 2、多线程中,所有子线程的进程号相同;多进程中不同的子进程进程号不同。
linux下的C\C++多进程多线程编程实例详解1、多进程编程#include#include#includeintmain(){pid_tchild_pid;
Python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程。python提供了非常好用的多进程包M
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包