利用python绘制数据曲线图的实现

时间:2021-05-23

”在举国上下万众一心、众志成城做好新冠肺炎疫情防控工作的特殊时刻,我们不能亲临主战场,但我们能坚持在大战中坚定信心、不负韶华。“

1、爬取新闻保存为json文件,并将绘图所需数据保存至数据库

数据库表结构:


代码部分:

import pymysqlimport reimport sys,urllib,jsonfrom urllib import requestfrom datetime import datetimeimport pandas as pdToday=datetime.now().strftime(r"%Y-%m-%d")#Today='2020-02-14'def pachong(): url='http://api.tianapi.com/txapi/ncov/index?key=xxx&date={}'.format(Today) req = request.Request(url) resp = request.urlopen(req) content = resp.read().decode() data=json.loads(content) with open('/Users/zhangyuchen/Desktop/latestTrends.json','w') as fp:#将所得的数据存储为json文件 json.dump(data,fp = fp,ensure_ascii = False,indent = 4,sort_keys=True) #dump函数有很多参数,第一个是目标object,第二个是要写入的文件对象 print("成功保存为json文件!") return(re.findall(r'"confirmedCount":(.+?),"',content),re.findall(r'"currentConfirmedCount":(.+?),"',content),re.findall(r'"curedCount":(.+?),"',content))def connectMysql(cc): #/usr/local/mysql/bin/mysql -u root -p db = pymysql.connect("localhost", "root", "密码", "dbname",charset='utf8' ) cursor = db.cursor() sql="""insert into {0} (DATE,SICK,SICK_NOW,RECOVER)values('{1}','{2}','{3}','{4}')""" cursor.execute(sql.format('db1',Today,int(cc[0][0]),int(cc[1][0]),int(cc[2][0]))) cursor.execute(sql.format('db2',Today,int(cc[0][1]),int(cc[1][1]),int(cc[2][1]))) db.commit() print(("成功将{}数据存入数据库!").format(Today)) db.close()cc=pachong()connectMysql(cc)

json文件:

2、利用matplotlib库函数绘制图表

import numpy as npimport matplotlib.pyplot as pltimport matplotlibimport pymysqlimport reimport sys, urllib,jsonfrom urllib import request#/usr/local/mysql/bin/mysql -u root -pdate=[]cSick=[]aSick=[]cNowSick=[]aNowSick=[]cRecover=[]aRecover=[]db = pymysql.connect("localhost", "root", "密码", "trends")sql="select * from db1 ORDER BY DATE"cursor = db.cursor()cursor.execute(sql)results = cursor.fetchall()while results: for row in results: date.append(row[0].strftime("%d")) cSick.append(row[1]) cNowSick.append(row[2]) cRecover.append(row[3]) results=cursor.fetchone()#查询Abroad Tablesql="select * from db2"cursor.execute(sql)results = cursor.fetchall()while results: for row in results: aSick.append(row[1]) aNowSick.append(row[2]) aRecover.append(row[3]) results=cursor.fetchone()cursor.close()db.close()def DrawLineChart(ySick,yNowSick): plt.plot(x,ySick,color='y',label="Cumulative number of cases",linewidth=3,linestyle="--") plt.plot(x,yNowSick,color='r',label="Current number of cases",linewidth=3,linestyle="-")def DrawBarChart(yRecover): width=0.45#柱子宽度 p2 = plt.bar(x,yRecover,width,label="Cured Count",color="#87CEFA")Days=len(aSick)plt.figure(figsize=(16,12), dpi=80)#设置分辨率为80像素/每英寸x=np.arange(Days)#创建两个子图plt.subplot(322)plt.title("Trends of March")DrawLineChart(cSick,cNowSick)DrawBarChart(cRecover)plt.figlegend()plt.xticks(x,date)plt.ylabel('Number')plt.subplot(324)#plt.title("Trends of March")DrawLineChart(aSick,aNowSick)DrawBarChart(aRecover)plt.xticks(x,date,rotation=0)plt.xlabel('Date')plt.ylabel('Number')plt.show()

到此这篇关于利用python绘制数据曲线图的实现的文章就介绍到这了,更多相关python 数据曲线图内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章