时间:2021-05-23
1、查看数据类型
In [11]: arr = np.array([1,2,3,4,5])In [12]: arrOut[12]: array([1, 2, 3, 4, 5])// 该命令查看数据类型In [13]: arr.dtypeOut[13]: dtype('int64')In [14]: float_arr = arr.astype(np.float64)// 该命令查看数据类型In [15]: float_arr.dtypeOut[15]: dtype('float64')2、转换数据类型
// 如果将浮点数转换为整数,则小数部分会被截断In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])In [8]: arr2Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])// 查看当前数据类型In [9]: arr2.dtypeOut[9]: dtype('float64')// 转换数据类型 float -> intIn [10]: arr2.astype(np.int32)Out[10]: array([1, 2, 3, 4, 5], dtype=int32)3、字符串数组转换为数值型
In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)In [5]: numeric_stringsOut[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上In [6]: numeric_strings.astype(float)Out[6]: array([ 1.2, 2.3, 3.2141])以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
如下所示:函数说明type()返回数据结构类型(list、dict、numpy.ndarray等)dtype()返回数据元素的数据类型(int、float等)备
由于opencv读入图片数据类型是uint8类型,直接加减会导致数据溢出现象(1)用Numpy操作可以先将图片数据类型转换成int类型进行计算,data=np.
python的使用之所以方便,原因之一就是各种数据类型各样轻松的转换,例如numpy数组和list的相互转换,只需要函数方法的使用就可以处理。numpy数组使用
在js中,数据类型转换分为显式数据类型转换和隐式数据类型转换。1,显式数据类型转换a:转数字:1)Number转换:代码:vara=“123”;a=Number
众所周知Java中的数据类型是强数据类型,基本数据类型之间的转换尤其固定的规则,当数据宽度比较窄的数据类型(如int)转换成数据类型比较宽的数据类型时(如dou