时间:2021-05-23
1、其中再语义分割比较常用的上采样:
其实现方法为:
def upconv2x2(in_channels, out_channels, mode='transpose'): if mode == 'transpose': # 这个上采用需要设置其输入通道,输出通道.其中kernel_size、stride # 大小要跟对应下采样设置的值一样大小。这样才可恢复到相同的wh。这里时反卷积操作。 return nn.ConvTranspose2d( in_channels, out_channels, kernel_size=2, stride=2) else: # out_channels is always going to be the same # as in_channels # 这里不会改变通道数,其中scale_factor是上采用的放大因子,其是相对于当前的 # 输入大小的倍数 return nn.Sequential( nn.Upsample(mode='bilinear', scale_factor=2, align_corners=True)) # 这里的代码是在这里设置多一个卷积,这样子就起到了可以修改其输出通道的功能了。 # 相当于功能跟ConvTranspose2d()差不多,只是上采样的方法不同 conv1x1((in_channels, out_channels)) def conv1x1(in_channels, out_channels, groups=1): return nn.Sequential(nn.Conv2d( in_channels, out_channels, kernel_size=1, groups=groups, stride=1), nn.BatchNorm2d(out_channels))另一种上采样的方法是,参考代码:segnet_pytorch:
# Stage 5 x51 = F.relu(self.bn51(self.conv51(x4p))) x52 = F.relu(self.bn52(self.conv52(x51))) x53 = F.relu(self.bn53(self.conv53(x52))) #这个id5记录的是池化操作时最大值的index,其要设置参数return_indices为True x5p, id5 = F.max_pool2d(x53,kernel_size=2, stride=2,return_indices=True) # Stage 5d #这个是进行最大值上采样的函数,其是根据id5来把值放到什么位置,其它位置没有值的地方 补0 x5d = F.max_unpool2d(x5p, id5, kernel_size=2, stride=2) x53d = F.relu(self.bn53d(self.conv53d(x5d))) x52d = F.relu(self.bn52d(self.conv52d(x53d))) x51d = F.relu(self.bn51d(self.conv51d(x52d)))测试例子:
#测试上采样m=nn.MaxPool2d((3,3),stride=(1,1),return_indices=True)upm=nn.MaxUnpool2d((3,3),stride=(1,1))data4=torch.randn(1,1,3,3)output5,indices=m(data4)output6=upm(output5,indices) print('\ndata4:',data4, '\nmaxPool2d',output5, '\nindices:',indices, '\noutput6:',output6)其输出为:
data4: tensor([[[[ 2.3151, -1.0391, 0.1074], [ 1.9360, 0.2524, 2.3735], [-0.1151, 0.4684, -1.8800]]]]) maxPool2d tensor([[[[2.3735]]]]) indices: tensor([[[[5]]]]) output6: tensor([[[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 2.3735], [0.0000, 0.0000, 0.0000]]]])以上这篇pytorch进行上采样的种类实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
最近用到了上采样下采样操作,pytorch中使用interpolate可以很轻松的完成definterpolate(input,size=None,scale_
Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统
resample()resample()进行重采样。重采样(Resampling)指的是把时间序列的频度变为另一个频度的过程。把高频度的数据变为低频度叫做降采样
1.如何创建一个有效的AudioRecorder实例Android各种设备的采样频率不同,输入的声道数也不同,如果采用固定的采样频率和声道数,那么得到的Audi
使用AndroidAudioRecord录制PCM文件,androidSDK保证在所有设备上都支持的采样频率只有44100HZ,所以如果想得到其他采样频率的PC