时间:2021-05-23
1.tf.train.exponential_decay() 指数衰减学习率:
#tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False):#指数衰减学习率#learning_rate-学习率#global_steps-训练轮数#decay_steps-完整的使用一遍训练数据所需的迭代轮数;=总训练样本数/batch#decay_rate-衰减速度#staircase-衰减方式;=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率;=alse,那就是每一步都更新学习速率。learning_rate = tf.train.exponential_decay(initial_learning_rate = 0.001global_step = tf.Variable(0, trainable=False)decay_steps = 100decay_rate = 0.95total_loss = slim.losses.get_total_loss()learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)2.tf.train.ExponentialMovingAverage(decay, steps) 滑动平均更新参数:
initial_learning_rate = 0.001global_step = tf.Variable(0, trainable=False)decay_steps = 100decay_rate = 0.95total_loss = slim.losses.get_total_loss()learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)ema = tf.train.ExponentialMovingAverage(decay=0.9999)#tf.trainable_variables--返回的是需要训练的变量列表averages_op = ema.apply(tf.trainable_variables())with tf.control_dependencies([optimizer]): train_op = tf.group(averages_op)以上这篇有关Tensorflow梯度下降常用的优化方法分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,
1.梯度下降1)什么是梯度下降?因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降。简单来说,梯度下降就是从山顶找一条最短的路走到山脚最
梯度下降法是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降是最常采用的方法之一,在求解
本文实例为大家分享了python实现梯度下降算法的具体代码,供大家参考,具体内容如下简介本文使用python实现了梯度下降算法,支持y=Wx+b的线性回归目前支
本文实现的原理很简单,优化方法是用的梯度下降。后面有测试结果。先来看看实现的示例代码:#coding=utf-8frommathimportexpimportm