使用Python做垃圾分类的原理及实例代码附源码

时间:2021-05-23

0 引言

纸巾再湿也是干垃圾?瓜子皮再干也是湿垃圾??最近大家都被垃圾分类折磨的不行,傻傻的你是否拎得清?😭😭😭自2019.07.01开始,上海已率先实施垃圾分类制度,违反规定的还会面临罚款。

为了避免巨额损失,我决定来b站学习下垃圾分类的技巧。为什么要来b站,听说这可是当下年轻人最流行的学习途径之一。

打开b站,搜索了下垃圾分类,上来就被这个标题吓(吸)到(引)了:在上海丢人的正确姿势。


当然,这里的丢人非彼丢人,指的是丢垃圾的丢。

点开发现,原来是一段对口相声啊,还是两个萌妹子(AI)的对口相声,瞬间就来了兴趣,阐述的是关于如何进行垃圾分类的。


原视频链接:https://ments_dict)br.to_csv('barrage.csv', encoding='utf-8')

接下来,我们就对保存好的弹幕数据进行深加工。

制作词云,我们需要用到 wordcloud 模块、matplotlib 模块、jieba 模块,同样都是第三方模块,直接用 pip 进行安装。

pip install wordcloudpip install matplotlibpip install jieba

模块安装好之后,进行导入,因为我们读取文件用到了 panda 模块,所以一并导入即可

from wordcloud import WordCloud, ImageColorGeneratorimport matplotlib.pyplot as pltimport pandas as pdimport jieba

我们可以自行选择一张图片,并基于此图片来生成一张定制的词云图。我们可以自定义一些词云样式,代码如下:

# 解析背景图片mask_img = plt.imread('Bulb.jpg')'''设置词云样式'''wc = WordCloud( # 设置字体 font_path='SIMYOU.TTF', # 允许最大词汇量 max_words = 2000, # 设置最大号字体大小 max_font_size = 80, # 设置使用的背景图片 mask = mask_img, # 设置输出的图片背景色 background_color=None, mode="RGBA", # 设置有多少种随机生成状态,即有多少种配色方案 random_state=30)

接下来,我们要读取文本信息(弹幕数据),进行分词并连接起来:

# 读取文件内容br = pd.read_csv('barrage.csv', header=None)# 进行分词,并用空格连起来text = ''for line in br[1]: text += ' '.join(jieba.cut(line, cut_all=False))

最后来看看我们效果图


有没有感受到大家对垃圾分类这个话题的热情,莫名喜感涌上心头。

4 后记

这两个AI萌妹子说的相声很不错,就不知道郭德纲看到这个作品会作何感想。回到垃圾分类的话题,目前《上海市生活垃圾管理条例》已正式施行,不在上海的朋友们也不要太开心,住建部表示,全国其它46个重点城市也即将体验到……

源码,请点击此处。

以上所述是小编给大家介绍的使用Python做垃圾分类的原理及实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章