时间:2021-05-23
np矩阵可以直接与标量运算
>>>import numpy as np>>>arr1 = np.arange(12).reshape([2,2,3])>>>arr1array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]])>>>arr1*5array([[[ 0, 5, 10], [15, 20, 25]], [[30, 35, 40], [45, 50, 55]]])>>>arr1-5array([[[-5, -4, -3], [-2, -1, 0]], [[ 1, 2, 3], [ 4, 5, 6]]])>>>arr1**2array([[[ 0, 1, 4], [ 9, 16, 25]], [[ 36, 49, 64], [ 81, 100, 121]]])若arr1是高维数组,如果arr2的维度与arr1某个子数组维度相同,那么可以相互作运算。
PyDev console: starting.Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 16:52:21) [Clang 6.0 (clang-600.0.57)] on darwin>>>import numpy as np>>>arr1 = np.arange(12).reshape([2,2,3])>>>arr1array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]])>>>arr2 = np.array([2,2,2])>>>arr2array([2, 2, 2])>>>arr1*arr2array([[[ 0, 2, 4], [ 6, 8, 10]], [[12, 14, 16], [18, 20, 22]]])>>>arr3 = np.arange(6).reshape([2,3])>>>arr1*arr3array([[[ 0, 1, 4], [ 9, 16, 25]], [[ 0, 7, 16], [27, 40, 55]]])补充:python 按不同维度求和,最值,均值
当变量维数加大时很难想象是怎样按不同维度求和的,高清楚一个,其他的应该就很清楚了,什么都不说了,上例子,例子一看便明白…..
a=range(27)a=np.array(a)a=np.reshape(a,[3,3,3])输出a的结果是:
array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [24, 25, 26]]])我们来看看 aa=np.sum(a,-1)的输出:
array([[ 3, 12, 21],[30, 39, 48],[57, 66, 75]])bb=np.sum(a,2) 的输出
array([[ 3, 12, 21], [30, 39, 48], [57, 66, 75]])cc=np.sum(a,0)的输出:
array([[27, 30, 33], [36, 39, 42], [45, 48, 51]])cc=np.sum(a,1)的输出:
array([[ 9, 12, 15], [36, 39, 42], [63, 66, 69]])第-1个维度与第2个维度是一样的,第-1个维度实际是指最后一个维度。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库!Numpy比Python列表更具优势,其中一个优势便是速度。在对大型数组执行操作时,N
来自《Python数据分析基础教程:Numpy学习指南(第2版)》Numpy改变数组维度的方法有:reshape()ravel()flatten()用元组设置维
在实际使用numpy时,我们常常会使用numpy数组的-1维度和”:”用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。总体来说,”:”用以表示当
numpy中包含的newaxis可以给原数组增加一个维度np.newaxis放的位置不同,产生的新数组也不同一维数组x=np.random.randint(1,
NumPy(NumericalPython)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。今天就针对