时间:2021-05-23
Python的异常处理能力非常强大,但是用不好也会带来负面的影响。我平时写程序的过程中也喜欢使用异常,虽然采取防御性的方式编码会更好,但是交给异常处理会起到偷懒作用。偶尔会想想异常处理会对性能造成多大的影响,于是今天就试着测试了一下。
允许使用异常, 但必须小心。
异常是一种跳出代码块的正常控制流来处理错误或者其它异常条件的方式。
正常操作代码的控制流不会和错误处理代码混在一起. 当某种条件发生时, 它也允许控制流跳过多个框架. 例如, 一步跳出N个嵌套的函数, 而不必继续执行错误的代码。
可能会导致让人困惑的控制流. 调用库时容易错过错误情况。
异常必须遵守特定条件:
像这样触发异常: raise MyException("Error message") 或者 raise MyException . 不要使用两个参数的形式( raise MyException, "Error message" )或者过时的字符串异常( raise "Error message" )。
模块或包应该定义自己的特定域的异常基类, 这个基类应该从内建的Exception类继承. 模块的异常基类应该叫做”Error”。
永远不要使用 except: 语句来捕获所有异常, 也不要捕获 Exception 或者 StandardError , 除非你打算重新触发该异常, 或者你已经在当前线程的最外层(记得还是要打印一条错误消息). 在异常这方面, Python非常宽容, except: 真的会捕获包括Python语法错误在内的任何错误. 使用 except: 很容易隐藏真正的bug。
尽量减少try/except块中的代码量. try块的体积越大, 期望之外的异常就越容易被触发. 这种情况下, try/except块将隐藏真正的错误。
使用finally子句来执行那些无论try块中有没有异常都应该被执行的代码. 这对于清理资源常常很有用, 例如关闭文件。
当捕获异常时, 使用 as 而不要用逗号. 例如
采取比较简单直观的对照实验。
先定义一个装饰器,用来计算每个函数执行所需时间:
def timer(func): import time def wrapper(*args, **kwargs): startTime = time.time() f = func(*args, **kwargs) endTime = time.time() passTime = endTime - startTime print "执行函数%s使用了%f秒" % (getattr(func, "__name__"), passTime) return f return wrapper然后用该装饰器装饰测试的函数即可。
再定义一个叫do_something的函数,这个函数中就做一件事,把1赋值给变量a。在每个测试函数中,都会调用这个函数1000000次。
do_something:
def do_something(): a = 1我根据情况设计了不同的测试组:
测试组1(直接执行耗时操作):
@timerdef test1(): for _ in xrange(1000000): do_something()测试组2(耗时操作放在try中执行,不抛出错误):
@timerdef test2(): try: for _ in xrange(1000000): do_something() except Exception: do_something() else: pass finally: pass测试组3(try放耗时操作中,try每一次操作,不抛出错误):
@timerdef test3(): for _ in xrange(1000000): try: do_something() except Exception: do_something() else: pass finally: pass测试组4(try放耗时操作中,try每一次操作并进行异常处理(捕捉抛出的特定异常)):
@timerdef test4(): zero = 0 for _ in xrange(1000000): try: if zero == 0: raise ZeroDivisionError except ZeroDivisionError: do_something() else: pass finally: pass测试组5(try放耗时操作中,try每一次操作并进行异常处理(捕捉所有异常 try…except BaseException)):
@timerdef test5(): zero = 0 for _ in xrange(1000000): try: if zero == 0: raise ZeroDivisionError except BaseException: do_something() else: pass finally: pass测试组6(try放耗时操作中,try每一次操作并进行异常处理(捕捉所有异常 不带任何异常类型)):
@timerdef test6(): zero = 0 for _ in xrange(1000000): try: if zero == 0: raise ZeroDivisionError except: do_something() else: pass finally: pass测试组7(耗时操作放在except中):
@timerdef test7(): zero = 0 try: if zero == 0: raise ZeroDivisionError except ZeroDivisionError: for _ in xrange(1000000): do_something() else: pass finally: pass测试组8(防御式编码):
@timerdef test8(): zero = 0 for _ in xrange(1000000): if zero == 0: do_something()执行结果
以上就是本文关于Python异常对代码运行性能的影响实例解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python的异常,以及用try复合语句处理异常。运行代码时有时会出现各种各样的错误,致使解析器中断执行,并提示xxxxxxErorr的提示,后面跟具体的错误的
方法如下:1、将所有标签放在尽可能接近标签底部的位置,以保证页面在脚本运行之前完成解析尽量减少对整个页面下载的影响2、限制页面的总数也可以改善性能。每当页面解析
这篇文章主要介绍了Python解析json代码实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下什么是j
本文实例讲述了Python爬虫DNS解析缓存方法。分享给大家供大家参考,具体如下:前言:这是Python爬虫中DNS解析缓存模块中的核心代码,是去年的代码了,现
这篇文章主要介绍了java抛出异常与finally实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下代码