如何用pandas处理hdf5文件

时间:2021-05-23

什么是HDF5

HDF5:Hierarchical Data Format Version 5,对于存储大规模、具有相同类型的数据,HDF5是一种非常不错的存储格式,文件后缀名为h5。这种格式的文件的存储和读取速度非常快,并且我们可以把HDF5文件看成是一个"目录",它是分层次的,我们来看看如何操作。

创建和读取HDF5文件

import pandas as pdimport numpy as nphdf5 = pd.HDFStore("hello.h5", mode="w", complevel=9)"""path: 文件路径mode: 和python的open函数中的mode一致complevel: 压缩级别,默认是0到9。值越大,压缩程度越高,那么最终形成的文件所占的体积越小,但是相应的,在读取的时候用的解压缩的时间就越长"""# 打印是一个HDFStore对象print(hdf5) # <class 'pandas.io.pytables.HDFStore'># 存储数据,可以直接使用赋值的方式hdf5["series"] = pd.Series([1, 2, 3, 4, 5])hdf5["dataframe"] = pd.DataFrame(np.random.randint(3, 10, size=(8, 4)))# 除此之外,还可以使用put的方式"""hdf5.put("series", pd.Series([1, 2, 3, 4, 5]))hdf5.put("dataframe", pd.DataFrame(np.random.randint(3, 10, size=(8, 4))))put函数里面支持如下参数:key:写入数据的keyvalue:写入数据的valueformat:指定写出的模式,指定为"fixed",那么速度会快,但是不支持追加和查询。指定为"table",会以表格的模式写出,速度稍慢,但是支持追加和查询操作"""# 我们可以通过items来查看相应属性,类似于字典的itemsprint(list(hdf5.items()))"""File path: hello.h5[('/dataframe', /dataframe (Group) '' children := ['axis0' (CArray), 'axis1' (CArray), 'block0_values' (CArray), 'block0_items' (CArray)]), ('/series', /series (Group) '' children := ['index' (CArray), 'values' (CArray)])]"""# items不太好看,我们来看keys,查看keys,但是注意:没有values# 我们发现key是类似于目录一样的东西,名字就是我们设置的名字# 所以我们可以把HDF5看成是目录,里面不同的目录对应不同的内容print(hdf5.keys()) # ['/dataframe', '/series']# 查看元素直接调用即可print(hdf5["dataframe"])""" 0 1 2 30 4 8 5 61 4 6 7 92 6 3 9 43 8 9 3 94 6 6 3 45 6 9 9 86 4 8 9 67 9 5 8 8"""# 删除某个key,调用removehdf5.remove("series")print(hdf5.keys()) # ['/dataframe']# 如果想将数据保存到本地,那么调用close方法即可hdf5.close()# 查看数据流是否开启,返回False代表关闭了print(hdf5.is_open) # False# 另外创建HDF5文件,除了使用HDFStore,还可以通过先有的DataFrame进行操作。需要指定路径和key# df.to_hdf("xx.h5", key="key")

下面来看看如何读取文件

import pandas as pdimport numpy as np# 将mode改成r即可hdf5 = pd.HDFStore("hello.h5", mode="r")# 或者"""hdfs = pd.read_hdf("hello.h5", key="xxx")"""# 至于操作我们上面已经介绍了

hdf5这种格式是一种非常不错的格式,它无论是在存储方面和读取方面,文件大小和读取数据都比csv强不少,因此如果要存储大量的数据的话,那么hdf5这种文件格式是一种非常不错的选择。

以上就是如何用pandas处理hdf5文件的详细内容,更多关于pandas处理hdf5文件的资料请关注其它相关文章!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章