十分钟轻松掌握dataframe数据选择

时间:2021-05-23

数据初始化

import pandas as pdimport numpy as npa=np.array([['北京','北方','一线','非沿海'],['杭州','南方','二线','非沿海'],['深圳','南方','一线','沿海'],['烟台','北方','三线','沿海']])df=pd.DataFrame(a,index=['一','二','三','四'],columns=['城市','地理','级别','是否沿海'])

城市地理级别是否沿海
一北京北方一线非沿海
二杭州南方二线非沿海
三深圳南方一线沿海
四烟台北方三线沿海

选择某一行

通过loc选择某一行

loc标签是轴标签,也就是我们的索引名,使用也非常简单

df.loc['二']

城市 杭州
地理 南方
级别 二线
是否沿海 非沿海
Name: 二, dtype: object

通过iloc选择某一行

iloc为整数标签,类似我们使用的元组列表的索引。比如我们想选择第二行的数据,第二行的索引则为1.

df.iloc[1]

城市 杭州
地理 南方
级别 二线
是否沿海 非沿海
Name: 二, dtype: object

选择某一列

最简单的方法选择某一列

如果我们知道列索引,那么选择某一列则变得十分简单

df['级别']

一 一线
二 二线
三 一线
四 三线
Name: 级别, dtype: object

通过iloc选则某一列

正如我们上述使用iloc的方法,我们只需传入行或者列的索引即可。其实iloc的中括号里可以输入两个参数。前面为行,后面为列中间用逗号隔开。(如果省略了逗号,则默认取选择行)

比如现在我们想选择第二列,我们只需在逗号钱输入: 代表所有的行,后面则输入1代表第二列

df.iloc[:, 1]

一 北方
二 南方
三 南方
四 北方
Name: 地理, dtype: object

通过loc选择某一列

和iloc的使用相似,只不过在数据筛选中我们不再使用行整数索引,而是具体的索引值。

df.loc[:, '是否沿海']

一 非沿海
二 非沿海
三 沿海
四 沿海
Name: 是否沿海, dtype: object

选择某一行的某几列或某一列的某一行

其实loc与iloc是dataframe中选择数据最高效的方式,他的功能也十分强大。我们可以随意组合。

选择某一行的某几列

比如我们现在选择第二行的中间两列

df.iloc[1,1:3]

地理 南方
级别 二线
Name: 二, dtype: object

当然我们也可以不使用整数索引

df.loc['二':,'地理':'级别']

地理级别
二南方二线
三南方一线
四北方三线

通过行列自由组合去选择数据

比如我们想选择第二到三行的第二列和第三列

df.iloc[2:4:, 2:4]

级别是否沿海
三一线沿海
四三线沿海

同样十分简单,通过loc使用效果相同,这里不过多描述

选择某几列或者某几行

选择某几列

df.iloc[:,2:4]

级别是否沿海
一一线非沿海
二二线非沿海
三一线沿海
四三线沿海

选择某几行

城市地理级别是否沿海
二杭州南方二线非沿海
三深圳南方一线沿海

获取单个标量值

如果把dataframe看做一个表格,这里可以看成获得表格里某个单元格的值

通过iat去获取

iat即为整数标签

df.iat[2,2]

'一线'

通过at去获取

at即为具体的索引值去获取

df.at['三','级别']

'一线'

到此这篇关于十分钟轻松掌握dataframe数据选择的文章就介绍到这了,更多相关dataframe数据选择内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章