在Hadoop集群环境中为MySQL安装配置Sqoop的教程

时间:2021-05-23

Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。


一、安装sqoop
1、下载sqoop压缩包,并解压

压缩包分别是:sqoop-1.2.0-CDH3B4.tar.gz,hadoop-0.20.2-CDH3B4.tar.gz, Mysql JDBC驱动包mysql-connector-java-5.1.10-bin.jar

[root@node1 ~]# lldrwxr-xr-x 15 root root 4096 Feb 22 2011 hadoop-0.20.2-CDH3B4-rw-r--r-- 1 root root 724225 Sep 15 06:46 mysql-connector-java-5.1.10-bin.jardrwxr-xr-x 11 root root 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4

2、将sqoop-1.2.0-CDH3B4拷贝到/home/hadoop目录下,并将Mysql JDBC驱动包和hadoop-0.20.2-CDH3B4下的hadoop-core-0.20.2-CDH3B4.jar至sqoop-1.2.0-CDH3B4/lib下,最后修改一下属主。

[root@node1 ~]# cp mysql-connector-java-5.1.10-bin.jar sqoop-1.2.0-CDH3B4/lib[root@node1 ~]# cp hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar sqoop-1.2.0-CDH3B4/lib[root@node1 ~]# chown -R hadoop:hadoop sqoop-1.2.0-CDH3B4[root@node1 ~]# mv sqoop-1.2.0-CDH3B4 /home/hadoop[root@node1 ~]# ll /home/hadooptotal 35748-rw-rw-r-- 1 hadoop hadoop 343 Sep 15 05:13 derby.logdrwxr-xr-x 13 hadoop hadoop 4096 Sep 14 16:16 hadoop-0.20.2drwxr-xr-x 9 hadoop hadoop 4096 Sep 14 20:21 hive-0.10.0-rw-r--r-- 1 hadoop hadoop 36524032 Sep 14 20:20 hive-0.10.0.tar.gzdrwxr-xr-x 8 hadoop hadoop 4096 Sep 25 2012 jdk1.7drwxr-xr-x 12 hadoop hadoop 4096 Sep 15 00:25 mahout-distribution-0.7drwxrwxr-x 5 hadoop hadoop 4096 Sep 15 05:13 metastore_db-rw-rw-r-- 1 hadoop hadoop 406 Sep 14 16:02 scp.shdrwxr-xr-x 11 hadoop hadoop 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4drwxrwxr-x 3 hadoop hadoop 4096 Sep 14 16:17 tempdrwxrwxr-x 3 hadoop hadoop 4096 Sep 14 15:59 user

3、配置configure-sqoop,注释掉对于HBase和ZooKeeper的检查

[root@node1 bin]# pwd/home/hadoop/sqoop-1.2.0-CDH3B4/bin[root@node1 bin]# vi configure-sqoop #!/bin/bash## Licensed to Cloudera, Inc. under one or more# contributor license agreements. See the NOTICE file distributed with# this work for additional information regarding copyright ownership....# Check: If we can't find our dependencies, give up here.if [ ! -d "${HADOOP_HOME}" ]; then echo "Error: $HADOOP_HOME does not exist!" echo 'Please set $HADOOP_HOME to the root of your Hadoop installation.' exit 1fi#if [ ! -d "${HBASE_HOME}" ]; then# echo "Error: $HBASE_HOME does not exist!"# echo 'Please set $HBASE_HOME to the root of your HBase installation.'# exit 1#fi#if [ ! -d "${ZOOKEEPER_HOME}" ]; then# echo "Error: $ZOOKEEPER_HOME does not exist!"# echo 'Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.'# exit 1#fi

4、修改/etc/profile和.bash_profile文件,添加Hadoop_Home,调整PATH

[hadoop@node1 ~]$ vi .bash_profile # .bash_profile# Get the aliases and functionsif [ -f ~/.bashrc ]; then . ~/.bashrcfi# User specific environment and startup programsHADOOP_HOME=/home/hadoop/hadoop-0.20.2PATH=$HADOOP_HOME/bin:$PATH:$HOME/binexport HIVE_HOME=/home/hadoop/hive-0.10.0export MAHOUT_HOME=/home/hadoop/mahout-distribution-0.7export PATH HADOOP_HOME

二、测试Sqoop

1、查看mysql中的数据库:

[hadoop@node1 bin]$ ./sqoop list-databases --connect jdbc:mysql://192.168.1.152:3306/ --username sqoop --password sqoop13/09/15 07:17:16 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.13/09/15 07:17:17 INFO manager.MySQLManager: Executing SQL statement: SHOW DATABASESinformation_schemamysqlperformance_schemasqooptest

2、将mysql的表导入到hive中:

[hadoop@node1 bin]$ ./sqoop import --connect jdbc:mysql://192.168.1.152:3306/sqoop --username sqoop --password sqoop --table test --hive-import -m 113/09/15 08:15:01 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.13/09/15 08:15:01 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override13/09/15 08:15:01 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.13/09/15 08:15:01 INFO tool.CodeGenTool: Beginning code generation13/09/15 08:15:01 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 113/09/15 08:15:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 113/09/15 08:15:02 INFO orm.CompilationManager: HADOOP_HOME is /home/hadoop/hadoop-0.20.2/bin/..13/09/15 08:15:02 INFO orm.CompilationManager: Found hadoop core jar at: /home/hadoop/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar13/09/15 08:15:03 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a71936fd2bb45ea6757df22751a320e3/test.jar13/09/15 08:15:03 WARN manager.MySQLManager: It looks like you are importing from mysql.13/09/15 08:15:03 WARN manager.MySQLManager: This transfer can be faster! Use the --direct13/09/15 08:15:03 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.13/09/15 08:15:03 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)13/09/15 08:15:03 INFO mapreduce.ImportJobBase: Beginning import of test13/09/15 08:15:04 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 113/09/15 08:15:05 INFO mapred.JobClient: Running job: job_201309150505_000913/09/15 08:15:06 INFO mapred.JobClient: map 0% reduce 0%13/09/15 08:15:34 INFO mapred.JobClient: map 100% reduce 0%13/09/15 08:15:36 INFO mapred.JobClient: Job complete: job_201309150505_000913/09/15 08:15:36 INFO mapred.JobClient: Counters: 513/09/15 08:15:36 INFO mapred.JobClient: Job Counters 13/09/15 08:15:36 INFO mapred.JobClient: Launched map tasks=113/09/15 08:15:36 INFO mapred.JobClient: FileSystemCounters13/09/15 08:15:36 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=58332313/09/15 08:15:36 INFO mapred.JobClient: Map-Reduce Framework13/09/15 08:15:36 INFO mapred.JobClient: Map input records=6553613/09/15 08:15:36 INFO mapred.JobClient: Spilled Records=013/09/15 08:15:36 INFO mapred.JobClient: Map output records=6553613/09/15 08:15:36 INFO mapreduce.ImportJobBase: Transferred 569.6514 KB in 32.0312 seconds (17.7842 KB/sec)13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Retrieved 65536 records.13/09/15 08:15:36 INFO hive.HiveImport: Removing temporary files from import process: test/_logs13/09/15 08:15:36 INFO hive.HiveImport: Loading uploaded data into Hive13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 113/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 113/09/15 08:15:41 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties13/09/15 08:15:41 INFO hive.HiveImport: Hive history file=/tmp/hadoop/hive_job_log_hadoop_201309150815_1877092059.txt13/09/15 08:16:10 INFO hive.HiveImport: OK13/09/15 08:16:10 INFO hive.HiveImport: Time taken: 28.791 seconds13/09/15 08:16:11 INFO hive.HiveImport: Loading data to table default.test13/09/15 08:16:12 INFO hive.HiveImport: Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 583323, raw_data_size: 0]13/09/15 08:16:12 INFO hive.HiveImport: OK13/09/15 08:16:12 INFO hive.HiveImport: Time taken: 1.704 seconds13/09/15 08:16:12 INFO hive.HiveImport: Hive import complete.

三、Sqoop 命令

Sqoop大约有13种命令,和几种通用的参数(都支持这13种命令),这里先列出这13种命令。
接着列出Sqoop的各种通用参数,然后针对以上13个命令列出他们自己的参数。Sqoop通用参数又分Common arguments,Incremental import arguments,Output line formatting arguments,Input parsing arguments,Hive arguments,HBase arguments,Generic Hadoop command-line arguments,下面说明一下几个常用的命令:
1.Common arguments
通用参数,主要是针对关系型数据库链接的一些参数
1)列出mysql数据库中的所有数据库

sqoop list-databases –connect jdbc:mysql://localhost:3306/ –username root –password 123456


2)连接mysql并列出test数据库中的表

sqoop list-tables –connect jdbc:mysql://localhost:3306/test –username root –password 123456

命令中的test为mysql数据库中的test数据库名称 username password分别为mysql数据库的用户密码


3)将关系型数据的表结构复制到hive中,只是复制表的结构,表中的内容没有复制过去。

sqoop create-hive-table –connect jdbc:mysql://localhost:3306/test–table sqoop_test –username root –password 123456 –hive-tabletest

其中 –table sqoop_test为mysql中的数据库test中的表 –hive-table
test 为hive中新建的表名称


4)从关系数据库导入文件到hive中

sqoop import –connect jdbc:mysql://localhost:3306/zxtest –usernameroot –password 123456 –table sqoop_test –hive-import –hive-tables_test -m 1


5)将hive中的表数据导入到mysql中,在进行导入之前,mysql中的表
hive_test必须已经提起创建好了。

sqoop export –connect jdbc:mysql://localhost:3306/zxtest –usernameroot –password root –table hive_test –export-dir/user/hive/warehouse/new_test_partition/dt=2012-03-05


6)从数据库导出表的数据到HDFS上文件

./sqoop import –connectjdbc:mysql://10.28.168.109:3306/compression –username=hadoop–password=123456 –table HADOOP_USER_INFO -m 1 –target-dir/user/test


7)从数据库增量导入表数据到hdfs中

./sqoop import –connect jdbc:mysql://10.28.168.109:3306/compression–username=hadoop –password=123456 –table HADOOP_USER_INFO -m 1–target-dir /user/test –check-column id –incremental append–last-value 3

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章