时间:2021-05-23
前言
介绍Spark SQL的JSON支持,这是我们在Databricks中开发的一个功能,可以在Spark中更容易查询和创建JSON数据。随着网络和移动应用程序的普及,JSON已经成为Web服务API以及长期存储的常用的交换格式。使用现有的工具,用户通常会使用复杂的管道来在分析系统中读取和写入JSON数据集。在Apache Spark 1.1中发布Spark SQL的JSON支持,在Apache Spark 1.2中增强,极大地简化了使用JSON数据的端到端体验。
很多时候,比如用structure streaming消费kafka数据,默认可能是得到key,value字段,key是偏移量,value是一个byte数组。很可能value其实是一个Json字符串。这个时候我们该如何用SQL操作这个json里的东西呢?另外,如果我处理完的数据,我想写入到kafka,但是我想把整条记录作为json格式写入到Kafka,又该怎么写这个SQL呢?
get_json_object
第一个就是get_json_object,具体用法如下:
select get_json_object('{"k": "foo", "v": 1.0}','$.k') as k需要给定get_json_object 一个json字段名(或者字符串),然后通过类似jsonPath的方式去拿具体的值。
这个方法其实有点麻烦,如果要提取里面的是个字段,我就要写是个类似的东西,很复杂。
from_json
具体用法如下:
select a.k from (select from_json('{"k": "foo", "v": 1.0}','k STRING, v STRING',map("","")) as a)这个方法可以给json定义一个Schema,这样在使用时,就可以直接使用a.k这种方式了,会简化很多。
to_json
该方法可以把对应字段转化为json字符串,比如:
select to_json(struct(*)) AS value可以把所有字段转化为json字符串,然后表示成value字段,接着你就可以把value字段写入Kafka了。是不是很简单。
处理具有大量字段的JSON数据集
JSON数据通常是半结构化、非固定结构的。将来,我们将扩展Spark SQL对JSON支持,以处理数据集中的每个对象可能具有相当不同的结构的情况。例如,考虑使用JSON字段来保存表示HTTP标头的键/值对的数据集。每个记录可能会引入新的标题类型,并为每个记录使用一个不同的列将产生一个非常宽的模式。我们计划支持自动检测这种情况,而是使用map类型。因此,每行可以包含Map,使得能够查询其键/值对。这样,Spark SQL将处理具有更少结构的JSON数据集,推动了基于SQL的系统可以处理的那种查询的边界。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文详细讲述了Access中使用SQL语句应掌握的几点技巧。技巧:自增字段用Counter声明。字段名为关键字的字段用方括号[]括起来,数字作为字段名也可行。建
MySQL5.7.8中引入了json字段,这种类型的字段使用的频率比较低,但是在实际操作中,有些业务仍然在用,我们以此为例,介绍下json字段的操作方法:还是从
SQLServer中JSON_MODIFY的使用IntroSQLServer从2016开始支持了一些JSON操作,最近的项目里也是好多地方字段直接存成了JSON
一、场景还原前端小林问我,它从前端的返回的某些字段,想知道那个表有这个字段,它想操作这个表……二、sql语句SELECT*FROMinformation_sch
之前一直使用hdfs的命令进行hdfs操作,比如:hdfsdfs-ls/user/spark/hdfsdfs-get/user/spark/a.txt/home