Mysql巧用join优化sql的方法详解

时间:2021-05-24

0. 准备相关表来进行接下来的测试

相关建表语句请看:https://github.com/YangBaohust/my_sql

user1表,取经组+----+-----------+-----------------+---------------------------------+| id | user_name | comment | mobile |+----+-----------+-----------------+---------------------------------+| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 || 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 || 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 || 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 || 5 | NULL | 白龙马 | 993267899 |+----+-----------+-----------------+---------------------------------+user2表,悟空的朋友圈+----+--------------+-----------+| id | user_name | comment |+----+--------------+-----------+| 1 | 孙悟空 | 美猴王 || 2 | 牛魔王 | 牛哥 || 3 | 铁扇公主 | 牛夫人 || 4 | 菩提老祖 | 葡萄 || 5 | NULL | 晶晶 |+----+--------------+-----------+user1_kills表,取经路上杀的妖怪数量+----+-----------+---------------------+-------+| id | user_name | timestr | kills |+----+-----------+---------------------+-------+| 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 || 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 || 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 || 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 || 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 || 8 | 沙僧 | 2013-01-10 00:00:00 | 3 || 9 | 沙僧 | 2013-01-22 00:00:00 | 9 || 10 | 沙僧 | 2013-02-11 00:00:00 | 5 |+----+-----------+---------------------+-------+user1_equipment表,取经组装备+----+-----------+--------------+-----------------+-----------------+| id | user_name | arms | clothing | shoe |+----+-----------+--------------+-----------------+-----------------+| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 || 2 | 孙悟空 | 金箍棒 | 梭子黄金甲 | 藕丝步云履 || 3 | 猪八戒 | 九齿钉耙 | 僧衣 | 僧鞋 || 4 | 沙僧 | 降妖宝杖 | 僧衣 | 僧鞋 |+----+-----------+--------------+-----------------+-----------------+

1. 使用left join优化not in子句

例子:找出取经组中不属于悟空朋友圈的人

+----+-----------+-----------------+-----------------------+| id | user_name | comment | mobile |+----+-----------+-----------------+-----------------------+| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 || 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 || 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 |+----+-----------+-----------------+-----------------------+

not in写法:

select * from user1 a where a.user_name not in (select user_name from user2 where user_name is not null);

left join写法:

首先看通过user_name进行连接的外连接数据集

select a.*, b.* from user1 a left join user2 b on (a.user_name = b.user_name);+----+-----------+-----------------+---------------------------------+------+-----------+-----------+| id | user_name | comment | mobile | id | user_name | comment |+----+-----------+-----------------+---------------------------------+------+-----------+-----------+| 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 | 1 | 孙悟空 | 美猴王 || 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 | NULL | NULL | NULL || 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 | NULL | NULL | NULL || 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 | NULL | NULL | NULL || 5 | NULL | 白龙马 | 993267899 | NULL | NULL | NULL |+----+-----------+-----------------+---------------------------------+------+-----------+-----------+

可以看到a表中的所有数据都有显示,b表中的数据只有b.user_name与a.user_name相等才显示,其余都以null值填充,要想找出取经组中不属于悟空朋友圈的人,只需要在b.user_name中加一个过滤条件b.user_name is null即可。

select a.* from user1 a left join user2 b on (a.user_name = b.user_name) where b.user_name is null;+----+-----------+-----------------+-----------------------+| id | user_name | comment | mobile |+----+-----------+-----------------+-----------------------+| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 || 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 || 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 || 5 | NULL | 白龙马 | 993267899 |+----+-----------+-----------------+-----------------------+

看到这里发现结果集中还多了一个白龙马,继续添加过滤条件a.user_name is not null即可。

select a.* from user1 a left join user2 b on (a.user_name = b.user_name) where b.user_name is null and a.user_name is not null;

2. 使用left join优化标量子查询

例子:查看取经组中的人在悟空朋友圈的昵称

+-----------+-----------------+-----------+| user_name | comment | comment2 |+-----------+-----------------+-----------+| 唐僧 | 旃檀功德佛 | NULL || 孙悟空 | 斗战胜佛 | 美猴王 || 猪八戒 | 净坛使者 | NULL || 沙僧 | 金身罗汉 | NULL || NULL | 白龙马 | NULL |+-----------+-----------------+-----------+

子查询写法:

select a.user_name, a.comment, (select comment from user2 b where b.user_name = a.user_name) comment2 from user1 a;

left join写法:

select a.user_name, a.comment, b.comment comment2 from user1 a left join user2 b on (a.user_name = b.user_name);

3. 使用join优化聚合子查询

例子:查询出取经组中每人打怪最多的日期

+----+-----------+---------------------+-------+| id | user_name | timestr | kills |+----+-----------+---------------------+-------+| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 || 9 | 沙僧 | 2013-01-22 00:00:00 | 9 |+----+-----------+---------------------+-------+

聚合子查询写法:

select * from user1_kills a where a.kills = (select max(b.kills) from user1_kills b where b.user_name = a.user_name);

join写法:

首先看两表自关联的结果集,为节省篇幅,只取猪八戒的打怪数据来看

select a.*, b.* from user1_kills a join user1_kills b on (a.user_name = b.user_name) order by 1;+----+-----------+---------------------+-------+----+-----------+---------------------+-------+| id | user_name | timestr | kills | id | user_name | timestr | kills |+----+-----------+---------------------+-------+----+-----------+---------------------+-------+| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 || 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 || 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 || 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 || 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 || 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |+----+-----------+---------------------+-------+----+-----------+---------------------+-------+

可以看到当两表通过user_name进行自关联,只需要对a表的所有字段进行一个group by,取b表中的max(kills),只要a.kills=max(b.kills)就满足要求了。sql如下

select a.* from user1_kills a join user1_kills b on (a.user_name = b.user_name) group by a.id, a.user_name, a.timestr, a.kills having a.kills = max(b.kills);

4. 使用join进行分组选择

例子:对第3个例子进行升级,查询出取经组中每人打怪最多的前两个日期

+----+-----------+---------------------+-------+| id | user_name | timestr | kills |+----+-----------+---------------------+-------+| 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 || 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 || 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 || 9 | 沙僧 | 2013-01-22 00:00:00 | 9 || 10 | 沙僧 | 2013-02-11 00:00:00 | 5 |+----+-----------+---------------------+-------+

在oracle中,可以通过分析函数来实现

select b.* from (select a.*, row_number() over(partition by user_name order by kills desc) cnt from user1_kills a) b where b.cnt <= 2;

很遗憾,上面sql在mysql中报错ERROR 1064 (42000): You have an error in your SQL syntax; 因为mysql并不支持分析函数。不过可以通过下面的方式去实现。

首先对两表进行自关联,为了节约篇幅,只取出孙悟空的数据

select a.*, b.* from user1_kills a join user1_kills b on (a.user_name=b.user_name and a.kills<=b.kills) order by a.user_name, a.kills desc;+----+-----------+---------------------+-------+----+-----------+---------------------+-------+| id | user_name | timestr | kills | id | user_name | timestr | kills |+----+-----------+---------------------+-------+----+-----------+---------------------+-------+| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 || 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 || 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 || 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 || 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 || 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 || 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 |+----+-----------+---------------------+-------+----+-----------+---------------------+-------+

从上面的表中我们知道孙悟空打怪前两名的数量是22和12,那么只需要对a表的所有字段进行一个group by,对b表的id做个count,count值小于等于2就满足要求,sql改写如下:

select a.* from user1_kills a join user1_kills b on (a.user_name=b.user_name and a.kills<=b.kills) group by a.id, a.user_name, a.timestr, a.kills having count(b.id) <= 2;

5. 使用笛卡尔积关联实现一列转多行

例子:将取经组中每个电话号码变成一行

原始数据:

+-----------+---------------------------------+| user_name | mobile |+-----------+---------------------------------+| 唐僧 | 138245623,021-382349 || 孙悟空 | 159384292,022-483432,+86-392432 || 猪八戒 | 183208243,055-8234234 || 沙僧 | 293842295,098-2383429 || NULL | 993267899 |+-----------+---------------------------------+

想要得到的数据:

+-----------+-------------+| user_name | mobile |+-----------+-------------+| 唐僧 | 138245623 || 唐僧 | 021-382349 || 孙悟空 | 159384292 || 孙悟空 | 022-483432 || 孙悟空 | +86-392432 || 猪八戒 | 183208243 || 猪八戒 | 055-8234234 || 沙僧 | 293842295 || 沙僧 | 098-2383429 || NULL | 993267899 |+-----------+-------------+

可以看到唐僧有两个电话,因此他就需要两行。我们可以先求出每人的电话号码数量,然后与一张序列表进行笛卡儿积关联,为了节约篇幅,只取出唐僧的数据

select a.id, b.* from tb_sequence a cross join (select user_name, mobile, length(mobile)-length(replace(mobile, ',', ''))+1 size from user1) b order by 2,1;+----+-----------+---------------------------------+------+| id | user_name | mobile | size |+----+-----------+---------------------------------+------+| 1 | 唐僧 | 138245623,021-382349 | 2 || 2 | 唐僧 | 138245623,021-382349 | 2 || 3 | 唐僧 | 138245623,021-382349 | 2 || 4 | 唐僧 | 138245623,021-382349 | 2 || 5 | 唐僧 | 138245623,021-382349 | 2 || 6 | 唐僧 | 138245623,021-382349 | 2 || 7 | 唐僧 | 138245623,021-382349 | 2 || 8 | 唐僧 | 138245623,021-382349 | 2 || 9 | 唐僧 | 138245623,021-382349 | 2 || 10 | 唐僧 | 138245623,021-382349 | 2 |+----+-----------+---------------------------------+------+

a.id对应的就是第几个电话号码,size就是总的电话号码数量,因此可以加上关联条件(a.id <= b.size),将上面的sql继续调整

select b.user_name, replace(substring(substring_index(b.mobile, ',', a.id), char_length(substring_index(mobile, ',', a.id-1)) + 1), ',', '') as mobile from tb_sequence a cross join (select user_name, concat(mobile, ',') as mobile, length(mobile)-length(replace(mobile, ',', ''))+1 size from user1) b on (a.id <= b.size);

6. 使用笛卡尔积关联实现多列转多行

例子:将取经组中每件装备变成一行

原始数据:

+----+-----------+--------------+-----------------+-----------------+| id | user_name | arms | clothing | shoe |+----+-----------+--------------+-----------------+-----------------+| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 || 2 | 孙悟空 | 金箍棒 | 梭子黄金甲 | 藕丝步云履 || 3 | 猪八戒 | 九齿钉耙 | 僧衣 | 僧鞋 || 4 | 沙僧 | 降妖宝杖 | 僧衣 | 僧鞋 |+----+-----------+--------------+-----------------+-----------------+

想要得到的数据:

+-----------+-----------+-----------------+| user_name | equipment | equip_mame |+-----------+-----------+-----------------+| 唐僧 | arms | 九环锡杖 || 唐僧 | clothing | 锦斓袈裟 || 唐僧 | shoe | 僧鞋 || 孙悟空 | arms | 金箍棒 || 孙悟空 | clothing | 梭子黄金甲 || 孙悟空 | shoe | 藕丝步云履 || 沙僧 | arms | 降妖宝杖 || 沙僧 | clothing | 僧衣 || 沙僧 | shoe | 僧鞋 || 猪八戒 | arms | 九齿钉耙 || 猪八戒 | clothing | 僧衣 || 猪八戒 | shoe | 僧鞋 |+-----------+-----------+-----------------+

union的写法:

select user_name, 'arms' as equipment, arms equip_mame from user1_equipmentunion allselect user_name, 'clothing' as equipment, clothing equip_mame from user1_equipmentunion allselect user_name, 'shoe' as equipment, shoe equip_mame from user1_equipmentorder by 1, 2;

join的写法:

首先看笛卡尔数据集的效果,以唐僧为例

select a.*, b.* from user1_equipment a cross join tb_sequence b where b.id <= 3;+----+-----------+--------------+-----------------+-----------------+----+| id | user_name | arms | clothing | shoe | id |+----+-----------+--------------+-----------------+-----------------+----+| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 1 || 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 2 || 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 3 |+----+-----------+--------------+-----------------+-----------------+----+

使用case对上面的结果进行处理

select user_name, case when b.id = 1 then 'arms' when b.id = 2 then 'clothing'when b.id = 3 then 'shoe' end as equipment,case when b.id = 1 then arms end arms,case when b.id = 2 then clothing end clothing,case when b.id = 3 then shoe end shoefrom user1_equipment a cross join tb_sequence b where b.id <=3;+-----------+-----------+--------------+-----------------+-----------------+| user_name | equipment | arms | clothing | shoe |+-----------+-----------+--------------+-----------------+-----------------+| 唐僧 | arms | 九环锡杖 | NULL | NULL || 唐僧 | clothing | NULL | 锦斓袈裟 | NULL || 唐僧 | shoe | NULL | NULL | 僧鞋 |+-----------+-----------+--------------+-----------------+-----------------+

使用coalesce函数将多列数据进行合并

select user_name, case when b.id = 1 then 'arms' when b.id = 2 then 'clothing'when b.id = 3 then 'shoe' end as equipment,coalesce(case when b.id = 1 then arms end,case when b.id = 2 then clothing end,case when b.id = 3 then shoe end) equip_mamefrom user1_equipment a cross join tb_sequence b where b.id <=3 order by 1, 2;

7. 使用join更新过滤条件中包含自身的表

例子:把同时存在于取经组和悟空朋友圈中的人,在取经组中把comment字段更新为"此人在悟空的朋友圈"

我们很自然地想到先查出user1和user2中user_name都存在的人,然后更新user1表,sql如下

update user1 set comment = '此人在悟空的朋友圈' where user_name in (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name));

很遗憾,上面sql在mysql中报错:ERROR 1093 (HY000): You can't specify target table 'user1' for update in FROM clause,提示不能更新目标表在from子句的表。

那有没有其它办法呢?我们可以将in的写法转换成join的方式

select c.*, d.* from user1 c join (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name)) d on (c.user_name = d.user_name);+----+-----------+--------------+---------------------------------+-----------+| id | user_name | comment | mobile | user_name |+----+-----------+--------------+---------------------------------+-----------+| 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 | 孙悟空 |+----+-----------+--------------+---------------------------------+-----------+

然后对join之后的视图进行更新即可

update user1 c join (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name)) d on (c.user_name = d.user_name) set c.comment = '此人在悟空的朋友圈';

再查看user1,可以看到user1已修改成功

select * from user1;+----+-----------+-----------------------------+---------------------------------+| id | user_name | comment | mobile |+----+-----------+-----------------------------+---------------------------------+| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 || 2 | 孙悟空 | 此人在悟空的朋友圈 | 159384292,022-483432,+86-392432 || 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 || 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 || 5 | NULL | 白龙马 | 993267899 |+----+-----------+-----------------------------+---------------------------------+

8. 使用join删除重复数据

首先向user2表中插入两条数据

insert into user2(user_name, comment) values ('孙悟空', '美猴王');insert into user2(user_name, comment) values ('牛魔王', '牛哥');

例子:将user2表中的重复数据删除,只保留id号大的

+----+--------------+-----------+| id | user_name | comment |+----+--------------+-----------+| 1 | 孙悟空 | 美猴王 || 2 | 牛魔王 | 牛哥 || 3 | 铁扇公主 | 牛夫人 || 4 | 菩提老祖 | 葡萄 || 5 | NULL | 晶晶 || 6 | 孙悟空 | 美猴王 || 7 | 牛魔王 | 牛哥 |+----+--------------+-----------+

首先查看重复记录

select a.*, b.* from user2 a join (select user_name, comment, max(id) id from user2 group by user_name, comment having count(*) > 1) b on (a.user_name=b.user_name and a.comment=b.comment) order by 2;+----+-----------+-----------+-----------+-----------+------+| id | user_name | comment | user_name | comment | id |+----+-----------+-----------+-----------+-----------+------+| 1 | 孙悟空 | 美猴王 | 孙悟空 | 美猴王 | 6 || 6 | 孙悟空 | 美猴王 | 孙悟空 | 美猴王 | 6 || 2 | 牛魔王 | 牛哥 | 牛魔王 | 牛哥 | 7 || 7 | 牛魔王 | 牛哥 | 牛魔王 | 牛哥 | 7 |+----+-----------+-----------+-----------+-----------+------+

接着只需要删除(a.id < b.id)的数据即可

delete a from user2 a join (select user_name, comment, max(id) id from user2 group by user_name, comment having count(*) > 1) b on (a.user_name=b.user_name and a.comment=b.comment) where a.id < b.id;

查看user2,可以看到重复数据已经被删掉了

select * from user2;+----+--------------+-----------+| id | user_name | comment |+----+--------------+-----------+| 3 | 铁扇公主 | 牛夫人 || 4 | 菩提老祖 | 葡萄 || 5 | NULL | 晶晶 || 6 | 孙悟空 | 美猴王 || 7 | 牛魔王 | 牛哥 |+----+--------------+-----------+

总结:

给大家就介绍到这里,大家有兴趣可以多造点数据,然后比较不同的sql写法在执行时间上的区别。本文例子取自于慕课网《sql开发技巧》。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章