MySQL MEM_ROOT详解及实例代码

时间:2021-05-24

MySQL MEM_ROOT详解

这篇文章会详细解说MySQL中使用非常广泛的MEM_ROOT的结构体,同时省去debug部分的信息,仅分析正常情况下,mysql中使用MEM_ROOT来做内存分配的部分。

在具体分析之前我们先例举在该结构体使用过程中用到的一些宏:

#define MALLOC_OVERHEAD 8 //分配过程中,需要保留一部分额外的空间#define ALLOC_MAX_BLOCK_TO_DROP 4096 //后续会继续分析该宏的用途#define ALLOC_MAX_BLOCK_USAGE_BEFORE_DROP 10 //后续会继续分析该宏的用途#define ALIGN_SIZE(A) MY_ALIGN((A),sizeof(double))#define MY_ALIGN(A,L) (((A) + (L) - 1) & ~((L) - 1))#define ALLOC_ROOT_MIN_BLOCK_SIZE (MALLOC_OVERHEAD + sizeof(USED_MEM) + 8)#define MY_MAX(a, b) ((a) > (b) ? (a) : (b)) //求两个数值之间的最大值#define MY_MIN(a, b) ((a) < (b) ? (a) : (b)) //求两个数值之间的最小值

下面再来看看MEM_ROOT结构体相关的信息:

typedef struct st_mem_root{ USED_MEM *free; USED_MEM *used; USED_MEM *pre_alloc; size_t min_malloc; size_t block_size; unsigned int block_num; unsigned int first_block_usage; void (*error_handler)( void ); } MEM_ROOT;

以下是分配具体的block信息.

typedef struct st_used_mem{ struct st_used_mem *next; //指向下一个分配的block unsigned int left; //该block剩余的空间大小 unsigned int size; //该block的总大小} USED_MEM;

其实MEM_ROOT在分配过程中,是通过双向链表来管理used和free的block:

MEM_ROOT的初始化过程如下:

void init_alloc_root( MEM_ROOT *mem_root, size_t block_size, size_t pre_alloc_size __attribute__( (unused) ) ){ mem_root->free = mem_root->used = mem_root->pre_alloc = 0; mem_root->min_malloc = 32; mem_root->block_size = block_size - ALLOC_ROOT_MIN_BLOCK_SIZE; mem_root->error_handler = 0; mem_root->block_num = 4; mem_root->first_block_usage = 0;}

初始化过程中,block_size空间为block_size-ALLOC_ROOT_MIN_BLOCK_SIZE。因为在内存不够,需要扩容时,是通过mem_root->block_num >>2 * block_size 来扩容的,所以mem_root->block_num >>2 至少为1,因此在初始化的过程中mem_root->block_num=4(注:4>>2=1)。

下面来看看具体分配内存的步骤:

void *alloc_root( MEM_ROOT *mem_root, size_t length ){ size_t get_size, block_size; uchar * point; reg1 USED_MEM *next = 0; reg2 USED_MEM **prev; length = ALIGN_SIZE( length ); if ( (*(prev = &mem_root->free) ) != NULL ) { if ( (*prev)->left < length && mem_root->first_block_usage++ >= ALLOC_MAX_BLOCK_USAGE_BEFORE_DROP && (*prev)->left < ALLOC_MAX_BLOCK_TO_DROP ) { next = *prev; *prev = next->next; next->next = mem_root->used; mem_root->used = next; mem_root->first_block_usage = 0; } for ( next = *prev; next && next->left < length; next = next->next ) prev = &next->next; } if ( !next ) { block_size = mem_root->block_size * (mem_root->block_num >> 2); get_size = length + ALIGN_SIZE( sizeof(USED_MEM) ); get_size = MY_MAX( get_size, block_size ); if ( !(next = (USED_MEM *) my_malloc( get_size, MYF( MY_WME | ME_FATALERROR ) ) ) ) { if ( mem_root->error_handler ) (*mem_root->error_handler)(); DBUG_RETURN( (void *) 0 ); } mem_root->block_num++; next->next = *prev; next->size = get_size; next->left = get_size - ALIGN_SIZE( sizeof(USED_MEM) ); /* bug:如果该block是通过mem_root->block_size * (mem_root->block_num >> 2)计算出来的,则已经去掉了ALIGN_SIZE(sizeof(USED_MEM),这里重复了。 */ *prev = next; } point = (uchar *) ( (char *) next + (next->size - next->left) ); if ( (next->left -= length) < mem_root->min_malloc ) { *prev = next->next; next->next = mem_root->used; mem_root->used = next; mem_root->first_block_usage = 0; }}

上述代码的具体逻辑如下:

1.查看free链表,寻找满足空间的block。如果找到了合适的block,则:

1.1 直接返回该block从size-left处的初始地址即可。当然,在free list遍历的过程中,会去判断free list
中第一个block中left的空间不满足需要分配的空间,且该block中已经查找过了10次
(ALLOC_MAX_BLOCK_USAGE_BEFORE_DROP)都不满足分配长度,且该block剩余空间小于
4k(ALLOC_MAX_BLOCK_TO_DROP),则将该block 移动到used链表中。

2.如果free链表中,没有合适的block,则:

2.1 分配 mem_root->block_size * (mem_root->block_num >> 2)和length+ALIGN_SIZE(sizeof(USED_MEM))
中比较大的作为新的block内存空间。

2.2 根据该block的使用情况,将该block挂在used或者free链表上。

这里需要注意的是二级指针的使用:

for (next= *prev ; next && next->left < length ; next= next->next)prev= &next->next;}

prev指向的是最后一个block的next指向的地址的地址:

所以将prev的地址替换为new block的地址,即将该new block加到了free list的结尾:*prev=next;

总结:

MEM_ROOT的内存分配采用的是启发式分配算法,随着后续block的数量越多,单个block的内存也会越大:block_size= mem_root->block_size * (mem_root->block_num >> 2) .

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章