时间:2021-05-24
当然如果你登录服务器所在主机,直接在$PGDAT/pg_wal下执行:
du -h --max-depth=1 ./可以得到。
#du -h --max-depth=1 ./4.0K ./archive_status193M ./答案:pg_ls_waldir()函数。pg_ls_waldir()是pg 10.0引入的函数,可以输出数据库WAL目录的所有文件。
postgres=# select sum(size) from pg_ls_waldir(); sum ----------- 201326592(1 row)单位是byte,所以当前pg_wal的xlog日志总大小为201326592/1024/1024=192M。
也可以使用:
postgres=# select count(*) from pg_ls_waldir(); count ------- 12(1 row)12表示wal日志文件个数,总大小12*16=192M。
16表示单个wal日志文件大小,单位MB,WAL 日志文件大小默认为16MB。
bonus:
答:使用 initdb 调整WAL文件大小。
答:pg_ls_dir
postgres=# select pg_ls_dir('/data'); pg_ls_dir ----------------------补充:postgresql 查看wal生成频率和大小
–wal 文件生成数量
–linux ls --full-time stat filename
–pg_stat_file返回一个记录,其中包含
– 1 size 文件尺寸
– 2 access 最后访问时间戳(linux:最近访问) 、
– 3 modification 最后修改时间戳(linux:最近更改–) 、
– 4 change 最后文件状态改变时间戳(只支持 Unix 平台)(linux:最近改动) 、
– 5 creation 文件创建时间戳(只支持 Windows)
– 6 isdir 一个boolean指示它是否为目录 isdir
– select * from pg_stat_file('/var/lib/postgresql/9.1/main/pg_xlog/0000000200000BBB000000A9');– /var/lib/postgresql/9.1/main/pg_xlog– /var/log/postgresql– /mnt/nas_dbbackup/archivelogwith tmp_file as ( select t1.file, t1.file_ls, (pg_stat_file(t1.file)).size as size, (pg_stat_file(t1.file)).access as access, (pg_stat_file(t1.file)).modification as last_update_time, (pg_stat_file(t1.file)).change as change, (pg_stat_file(t1.file)).creation as creation, (pg_stat_file(t1.file)).isdir as isdir from (select dir||'/'||pg_ls_dir(t0.dir) as file, pg_ls_dir(t0.dir) as file_ls from ( select '/var/lib/postgresql/9.1/main/pg_xlog'::text as dir --需要修改这个物理路径 --select '/mnt/nas_dbbackup/archivelog'::text as dir --select setting as dir from pg_settings where name='log_directory' ) t0 ) t1 where 1=1 order by (pg_stat_file(file)).modification desc) select to_char(date_trunc('day',tf0.last_update_time),'yyyymmdd') as day_id, sum(case when date_part('hour',tf0.last_update_time) >=0 and date_part('hour',tf0.last_update_time) <24 then 1 else 0 end) as wal_num_all, sum(case when date_part('hour',tf0.last_update_time) >=0 and date_part('hour',tf0.last_update_time) <1 then 1 else 0 end) as wal_num_00_01, sum(case when date_part('hour',tf0.last_update_time) >=1 and date_part('hour',tf0.last_update_time) <2 then 1 else 0 end) as wal_num_01_02, sum(case when date_part('hour',tf0.last_update_time) >=2 and date_part('hour',tf0.last_update_time) <3 then 1 else 0 end) as wal_num_02_03, sum(case when date_part('hour',tf0.last_update_time) >=3 and date_part('hour',tf0.last_update_time) <4 then 1 else 0 end) as wal_num_03_04, sum(case when date_part('hour',tf0.last_update_time) >=4 and date_part('hour',tf0.last_update_time) <5 then 1 else 0 end) as wal_num_04_05, sum(case when date_part('hour',tf0.last_update_time) >=5 and date_part('hour',tf0.last_update_time) <6 then 1 else 0 end) as wal_num_05_06, sum(case when date_part('hour',tf0.last_update_time) >=6 and date_part('hour',tf0.last_update_time) <7 then 1 else 0 end) as wal_num_06_07, sum(case when date_part('hour',tf0.last_update_time) >=7 and date_part('hour',tf0.last_update_time) <8 then 1 else 0 end) as wal_num_07_08, sum(case when date_part('hour',tf0.last_update_time) >=8 and date_part('hour',tf0.last_update_time) <9 then 1 else 0 end) as wal_num_08_09, sum(case when date_part('hour',tf0.last_update_time) >=9 and date_part('hour',tf0.last_update_time) <10 then 1 else 0 end) as wal_num_09_10, sum(case when date_part('hour',tf0.last_update_time) >=10 and date_part('hour',tf0.last_update_time) <11 then 1 else 0 end) as wal_num_10_11, sum(case when date_part('hour',tf0.last_update_time) >=11 and date_part('hour',tf0.last_update_time) <12 then 1 else 0 end) as wal_num_11_12, sum(case when date_part('hour',tf0.last_update_time) >=12 and date_part('hour',tf0.last_update_time) <13 then 1 else 0 end) as wal_num_12_13, sum(case when date_part('hour',tf0.last_update_time) >=13 and date_part('hour',tf0.last_update_time) <14 then 1 else 0 end) as wal_num_13_14, sum(case when date_part('hour',tf0.last_update_time) >=14 and date_part('hour',tf0.last_update_time) <15 then 1 else 0 end) as wal_num_14_15, sum(case when date_part('hour',tf0.last_update_time) >=15 and date_part('hour',tf0.last_update_time) <16 then 1 else 0 end) as wal_num_15_16, sum(case when date_part('hour',tf0.last_update_time) >=16 and date_part('hour',tf0.last_update_time) <17 then 1 else 0 end) as wal_num_16_17, sum(case when date_part('hour',tf0.last_update_time) >=17 and date_part('hour',tf0.last_update_time) <18 then 1 else 0 end) as wal_num_17_18, sum(case when date_part('hour',tf0.last_update_time) >=18 and date_part('hour',tf0.last_update_time) <19 then 1 else 0 end) as wal_num_18_19, sum(case when date_part('hour',tf0.last_update_time) >=19 and date_part('hour',tf0.last_update_time) <20 then 1 else 0 end) as wal_num_19_20, sum(case when date_part('hour',tf0.last_update_time) >=20 and date_part('hour',tf0.last_update_time) <21 then 1 else 0 end) as wal_num_20_21, sum(case when date_part('hour',tf0.last_update_time) >=21 and date_part('hour',tf0.last_update_time) <22 then 1 else 0 end) as wal_num_21_22, sum(case when date_part('hour',tf0.last_update_time) >=22 and date_part('hour',tf0.last_update_time) <23 then 1 else 0 end) as wal_num_22_23, sum(case when date_part('hour',tf0.last_update_time) >=23 and date_part('hour',tf0.last_update_time) <24 then 1 else 0 end) as wal_num_23_24from tmp_file tf0where 1=1 and tf0.file_ls not in ('archive_status')group by to_char(date_trunc('day',tf0.last_update_time),'yyyymmdd')order by to_char(date_trunc('day',tf0.last_update_time),'yyyymmdd') desc;以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
WAL是WriteAheadLog的简写,和oracle的redo日志类似,存放在$PGDATA/pg_xlog中,10版本以后在$PGDATA/pg_wal目
方法:pg10.0之前:selectpg_switch_xlog();pg10.0之后:selectpg_switch_wal();备注:执行pg_switch
显示当前目录下各个文件的大小复制代码代码如下:ll-h(相对于ls-lh)显示当前目录下各个文件夹的文件总大小复制代码代码如下:ls|xargsdu-sh当前服
0前言1、2部分是对XLOG生成和清理逻辑的分析,XLOG暴涨的处理直接看第3部分。1WAL归档#在自动的WAL检查点之间的日志文件段的最大数量checkpoi
1、查看postgresql.conf文件的配置,看日志文件在哪logging_collector=onlog_directory='pg_log'log_fi