时间:2021-05-26
本文实例讲述了PHP实现的迪科斯彻(Dijkstra)最短路径算法。分享给大家供大家参考,具体如下:
一、待解决问题
单源最短路径问题,在给定有向图中求一个顶点(单源顶点)到其他所有顶点的最短路径问题。在下图中,每条边上有一个权值,希望求解A到所有其他顶点(B/C/D/E/F/G)的最短路径。
二、问题分析(最短路径的子结构同样最优性)
如果P(A,G)是从顶点A到G的最短路径,假设D和F是这条路径上的中间点,那么P(D,F)一定时从D到F的最短路径。如果P(D,F)不是D到F的最短路径,那必然存在某一个节点M的另一条D到F的路径可以使P(A,B...M...F,G)比P(A,G)小,自相矛盾。
有了这样的性质,我们可以了解Dijkstra算法。
三、Dijkstra算法
Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),又称为单源最短路径算法,所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题。 问题描述为设G=(V,E)是一个有向图,V表示顶点,E表示边。它的每一条边(i,j)属于E,都有一个非负权W(I,j),在G中指定一个结点v0,要求把从v0到G的每一个接vj(vj属于V)的最短有向路径找出来(或者指出不存在)。 Dijstra算法是运用贪心的策略,从源点开始,不断地通过相联通的点找出到其他点的最短距离。
Dijkstra的贪心应用在他利用(二)中的性质,不断地选取“最近”的节点并试探每个节点的所有可能存在链接,以起始点为中心向外层层扩展,直到扩展到终点为止。对于源点A,逐步扩展,根据dist[j]=min{dist[j],dist[i]+matrix[i][j]}更新与i直接相邻的顶点信息。
算法描述
1)算法思想:
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中与k相邻的各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上k与u边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
四、算法PHP实现
<?phpclass Dijkstra{ private $G; public function __construct() { //有向图存储 $this->G = array( array(0,1,2,0,0,0,0), array(0,0,0,1,2,0,0), array(0,0,0,0,0,2,0), array(0,0,0,0,0,1,3), array(0,0,0,0,0,0,3), array(0,0,0,0,0,0,1), array(0,0,0,0,0,0,0), ); } public function calculate() { // 存储已经选择节点和剩余节点 $U = array(0); $V = array(1,2,3,4,5,6); // 存储路径上节点距离源点的最小距离 $d = array(); //初始化图中节点与源点0的最小距离 for($i=1;$i<7;$i++) { if($this->G[0][$i]>0) { $d[$i] = $this->G[0][$i]; } else { $d[$i] = 1000000; } } // n-1次循环完成转移节点任务 for($l=0;$l<6;$l++) { // 查找剩余节点中距离源点最近的节点v $current_min = 100000; $current_min_v = 0; foreach($V as $k=>$v) { if($d[$v] < $current_min) { $current_min = $d[$v]; $current_min_v = $v; } } //从V中更新顶点到U中 array_push($U,$current_min_v); array_splice($V,array_search($current_min_v,$V),1); //更新 foreach($V as $k=>$u) { if($this->G[$current_min_v][$u]!=0&&$d[$u]>$d[$current_min_v]+$this->G[$current_min_v][$u]) { $d[$u] = $d[$current_min_v]+$this->G[$current_min_v][$u]; } } } foreach($d as $k => $u) { echo $k.'=>'.$u.'<br>'; } }}?>调用类:
$D = new Dijkstra;$D->calculate();执行结果:
1=>12=>23=>24=>35=>36=>4更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《PHP基本语法入门教程》、《php面向对象程序设计入门教程》、《php字符串(string)用法总结》及《php查找技巧与方法总结》
希望本文所述对大家PHP程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
最短路径问题(python实现)解决最短路径问题:(如下三种算法)(1)迪杰斯特拉算法(Dijkstra算法)(2)弗洛伊德算法(Floyd算法)(3)SPFA
Dijkstra算法Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,是广度优先算法的一种,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始
算法介绍迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块
迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法。1算法原理迪杰斯特拉(Dijkstra)算法是一个按照
一、迪杰斯特拉算法思想Dijkstra算法主要针对的是有向图的单元最短路径问题,且不能出现权值为负的情况!Dijkstra算法类似于贪心算法,其应用根本在于最短