在SQL Server中实现最短路径搜索的解决方法

时间:2021-05-02

开始

这是去年的问题了,今天在整理邮件的时候才发现这个问题,感觉顶有意思的,特记录下来。

在表RelationGraph中,有三个字段(ID,Node,RelatedNode),其中Node和RelatedNode两个字段描述两个节点的连接关系;现在要求,找出从节点"p"至节点"j",最短路径(即经过的节点最少)。

图1.

解析:

了能够更好的描述表RelationGraph中字段Node和 RelatedNode的关系,我在这里特意使用一个图形来描述,
如图2.

图2.

在图2,可清晰的看出各个节点直接如何相连,也可以清楚的看出节点"p"至节点"j"的的几种可能路径。

从上面可以看出第2种可能路径,经过的节点最少。

为了解决开始的问题,我参考了两种方法,

第1方法是,

参考单源最短路径算法:


图3.

第2方法是,

针对第1种方法的改进,就是采用多源点方法,这里就是以节点"p"和节点"j"为中心向外层扩展,直到两圆外切点,如图4. :

图4.

实现:

在接下来,我就描述在SQL Server中,如何实现。当然我这里采用的前面说的第2种方法,以"P"和"J"为始点像中心外层层扩展。

这里提供有表RelactionGraph的create& Insert数据的脚本:

复制代码 代码如下:


use TestDB

go

if object_id('RelactionGraph') Is not null drop table RelactionGraph

create table RelactionGraph(ID int identity,Item nvarchar(50),RelactionItem nvarchar(20),constraint PK_RelactionGraph primary key(ID))

go

create nonclustered index IX_RelactionGraph_Item on RelactionGraph(Item) include(RelactionItem)

create nonclustered index IX_RelactionGraph_RelactionItem on RelactionGraph(RelactionItem) include(Item)

go

insert into RelactionGraph (Item, RelactionItem ) values

('a','b'),('a','c'),('a','d'),('a','e'),

('b','f'),('b','g'),('b','h'),

('c','i'),('c','j'),

('f','k'),('f','l'),

('k','o'),('k','p'),

('o','i'),('o','l')

go


编写一个存储过程up_GetPath

复制代码 代码如下:


use TestDB
go
--Procedure:
if object_id('up_GetPath') Is not null
Drop proc up_GetPath
go
create proc up_GetPath
(
@Node nvarchar(50),
@RelatedNode nvarchar(50)
)
As
set nocount on

declare
@level smallint =1, --当前搜索的深度
@MaxLevel smallint=100, --最大可搜索深度
@Node_WhileFlag bit=1, --以@Node作为中心进行搜索时候,作为能否循环搜索的标记
@RelatedNode_WhileFlag bit=1 --以@RelatedNode作为中心进行搜索时候,作为能否循环搜索的标记

--如果直接找到两个Node存在直接关系就直接返回
if Exists(select 1 from RelationGraph where (Node=@Node And RelatedNode=@RelatedNode) or (Node=@RelatedNode And RelatedNode=@Node) ) or @Node=@RelatedNode
begin
select convert(nvarchar(2000),@Node + ' --> '+ @RelatedNode) As RelationGraphPath,convert(smallint,0) As StopCount
return
end

--

if object_id('tempdb..#1') Is not null Drop Table #1 --临时表#1,存储的是以@Node作为中心向外扩展的各节点数据
if object_id('tempdb..#2') Is not null Drop Table #2 --临时表#2,存储的是以@RelatedNode作为中心向外扩展的各节点数据

create table #1(
Node nvarchar(50),--相对源点
RelatedNode nvarchar(50), --相对目标
Level smallint --深度
)

create table #2(Node nvarchar(50),RelatedNode nvarchar(50),Level smallint)

insert into #1 ( Node, RelatedNode, Level )
select Node, RelatedNode, @level from RelationGraph a where a.Node =@Node union --正向:以@Node作为源查询
select RelatedNode, Node, @level from RelationGraph a where a.RelatedNode = @Node --反向:以@Node作为目标进行查询
set @Node_WhileFlag=sign(@@rowcount)

insert into #2 ( Node, RelatedNode, Level )
select Node, RelatedNode, @level from RelationGraph a where a.Node =@RelatedNode union --正向:以@RelatedNode作为源查询
select RelatedNode, Node, @level from RelationGraph a where a.RelatedNode = @RelatedNode --反向:以@RelatedNode作为目标进行查询
set @RelatedNode_WhileFlag=sign(@@rowcount)

--如果在表RelationGraph中找不到@Node 或 @RelatedNode 数据,就直接跳过后面的While过程
if not exists(select 1 from #1) or not exists(select 1 from #2)
begin
goto While_Out
end


while not exists(select 1 from #1 a inner join #2 b on b.RelatedNode=a.RelatedNode) --判断是否出现切点
and (@Node_WhileFlag|@RelatedNode_WhileFlag)>0 --判断是否能搜索
And @level<@MaxLevel --控制深度
begin
if @Node_WhileFlag >0
begin
insert into #1 ( Node, RelatedNode, Level )
--正向
select a.Node,a.RelatedNode,@level+1
From RelationGraph a
where exists(select 1 from #1 where RelatedNode=a.Node And Level=@level) And
Not exists(select 1 from #1 where Node=a.Node)
union
--反向
select a.RelatedNode,a.Node,@level+1
From RelationGraph a
where exists(select 1 from #1 where RelatedNode=a.RelatedNode And Level=@level) And
Not exists(select 1 from #1 where Node=a.RelatedNode)

set @Node_WhileFlag=sign(@@rowcount)

end


if @RelatedNode_WhileFlag >0
begin
insert into #2 ( Node, RelatedNode, Level )
--正向
select a.Node,a.RelatedNode,@level+1
From RelationGraph a
where exists(select 1 from #2 where RelatedNode=a.Node And Level=@level) And
Not exists(select 1 from #2 where Node=a.Node)
union
--反向
select a.RelatedNode,a.Node,@level+1
From RelationGraph a
where exists(select 1 from #2 where RelatedNode=a.RelatedNode And Level=@level) And
Not exists(select 1 from #2 where Node=a.RelatedNode)
set @RelatedNode_WhileFlag=sign(@@rowcount)
end

select @level+=1
end

While_Out:

--下面是构造返回的结果路径
if object_id('tempdb..#Path1') Is not null Drop Table #Path1
if object_id('tempdb..#Path2') Is not null Drop Table #Path2

;with cte_path1 As
(
select a.Node,a.RelatedNode,Level,convert(nvarchar(2000),a.Node+' -> '+a.RelatedNode) As RelationGraphPath,Convert(smallint,1) As PathLevel From #1 a where exists(select 1 from #2 where RelatedNode=a.RelatedNode)
union all
select b.Node,a.RelatedNode,b.Level,convert(nvarchar(2000),b.Node+' -> '+a.RelationGraphPath) As RelationGraphPath ,Convert(smallint,a.PathLevel+1) As PathLevel
from cte_path1 a
inner join #1 b on b.RelatedNode=a.Node
and b.Level=a.Level-1
)
select * Into #Path1 from cte_path1

;with cte_path2 As
(
select a.Node,a.RelatedNode,Level,convert(nvarchar(2000),a.Node) As RelationGraphPath,Convert(smallint,1) As PathLevel From #2 a where exists(select 1 from #1 where RelatedNode=a.RelatedNode)
union all
select b.Node,a.RelatedNode,b.Level,convert(nvarchar(2000),a.RelationGraphPath+' -> '+b.Node) As RelationGraphPath ,Convert(smallint,a.PathLevel+1)
from cte_path2 a
inner join #2 b on b.RelatedNode=a.Node
and b.Level=a.Level-1
)
select * Into #Path2 from cte_path2

;with cte_result As
(
select a.RelationGraphPath+' -> '+b.RelationGraphPath As RelationGraphPath,a.PathLevel+b.PathLevel -1 As StopCount,rank() over(order by a.PathLevel+b.PathLevel) As Result_row
From #Path1 a
inner join #Path2 b on b.RelatedNode=a.RelatedNode
and b.Level=1
where a.Level=1
)
select distinct RelationGraphPath,StopCount From cte_result where Result_row=1
go


上面的存储过程,主要分为两大部分,第1部分是实现如何搜索,第2部分实现如何构造返回结果。其中第1部分的代码根据前面的方法2,通过@Node 和 @RelatedNode 两个节点向外层搜索,每次搜索返回的节点都保存至临时表#1和#2,再判断临时表#1和#2有没有出现切点,如果出现就说明已找到最短的路径(经过多节点数最少),否则就继续循环搜索,直到循环至最大的搜索深度(@MaxLevel smallint=100)或找到切点。要是到100层都没搜索到切点,将放弃搜索。这里使用最大可搜索深度@MaxLevel,目的是控制由于数据量大可能会导致性能差,因为在这里数据量与搜索性能成反比。代码中还说到一个正向和反向搜索,主要是相对Node 和 RelatedNode来说,它们两者互为参照对象,进行向外搜索使用。

下面是存储过程的执行:

复制代码 代码如下:

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章