时间:2021-05-18
图像识别过程中特征定义有四种方式:
1、统计方法。统计方法的典型代表是一种称为灰度共生矩阵GLCM的纹理特征分析方法Gotlieb和Kreyszig等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数。
2、几何方法。所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio棋盘格特征法和结构法。
3、模型法。模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场CRF模型法,如马尔可夫(Markov)随机场(MRF)模型法和Gibbs随机场模型法。
4、信号处理法。纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura纹理特征、自回归纹理模型、小波变换等。灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
ocrOpenCV想必做过程图像识别的同学们都对这两个词不陌生吧。ocr(opticalcharacterrecognition,光学字符识别)是指电子设备(例
机器学习用在图像识别是非常有趣的话题。我们可以利用OpenCV强大的功能结合机器学习算法实现图像识别系统。首先,输入若干图像,加入分类标记。利用向量量化方法将特
目标:爬取自己账号中购买的课程视频。一、实现登录账号这里采用的是手动输入验证码的方式,有能力的盆友也可以通过图像识别的方式自动填写验证码。登录后,采用sessi
MATLAB神经网络图像识别高识别率代码I0=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDa
本周微信发布了一个图像识别的SDK,并称图像识别的SDK之后会有更强大的功能。据了解,几个月以前微信发布了一个针对第三方的语音开放平台,加入了语音识别、语音转文