em算法原理

时间:2021-05-18

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

  最大期望算法经过两个步骤交替进行计算。

  第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值。

  第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。

  M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章