时间:2021-05-19
串的定位操作通常称作串的模式匹配,是各种处理系统中的最重要操作之一。
模式匹配最朴素的算法是回溯法,即模式串跟主串一个字符一个字符的匹配,当模式串中跟主串不匹配时,主串回溯到与模式串匹配开始的下一个位置,模式串回溯到第一个位置,继续匹配。算法的时间复杂度为O(m*n),算法如下:
复制代码 代码如下:
//朴素的串的模式匹配算法,S为主串,T为模式串,即找S中有没有与T相同的字串
int Index(char *S, char *T, int pos)//pos记录从哪一位开始匹配可以直接用0代替
{
int i=pos, j=0;
while(i <strlen(S) && j <strlen(T))//确保未超出字符串的长度
{
if (S[i] == T[j])
{ ++i; ++j;} //如果相同,则继续向后比较
else
{i = i-j+1; j =0;} //如果不同,就回溯,重新查找
}
if (j == strlen(T))
return i-strlen(T); //若匹配成功,返回S中与T字符串相同开始位置的索引
else return 0; //若匹配不成功,返回0
}
O(m*n)的时间复杂度有点大,于是人们发现了KMP算法,核心思想是:当不匹配发生时,主串不回溯,模式串回溯到“合适”的位置,哪个位置合适,只与模式串有关,所以可以先算出模式串中各个字符,当不匹配发生是,应该回溯到哪个位置。算法整体时间复杂度O(m+m)。
算法如下:
复制代码 代码如下:
void GetNext(char* T, int *next)
{
int i=1,j=0;
next[1]=0;
while( i < strlen(T) )
{
if (j == 0 || T[i] == T[j])
{
++i; ++j;
next[i] = j;
}
else j = next[j];
}
}
int KMP(char* S, char* T, int pos)
{
int i = pos, j = 1;
while (i)
{
if (S[i] == T[j])
{
++ i; ++ j;
}
else
j = next[j];
}
if (j > strlen(T))
return i-T[0];
else
return 0;
}
求next的操作不是最优的,因为他没有考虑aaaaaaaaaaaaaaaaaaab的情况,这样前面会出现大量的1,这样的算法复杂度已经和最初的朴素算法没有区别了。所以稍微改动一下:
复制代码 代码如下:
void GetNextEx(char *T, int *next)
{
int i=1,j=0; next[1] = 0;
while(i < strlen(T))
{
if (j == 0 || T[i] == T[j])
{
++i; ++j;
if (T[i] == T[j])
next[i] = next[j]; //减少回退次数
else next[i] = j; //和上面算法一样next[i]=j
}
else j = next[j];
}
}
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
KMP算法实例详解KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发
KMP算法和BM算法KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同前缀匹配是指:模式串和母串的比较从左到右,
C语言数据结构中串的模式匹配串的模式匹配问题:朴素算法与KMP算法#include#includeintIndex(char*S,char*T,intpos){
KMP算法是一种神奇的字符串匹配算法,在对超长字符串进行模板匹配的时候比暴力匹配法的效率会高不少。接下来我们从思路入手理解KMP算法。在对字符串进行匹配的时候我
kmp算法kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想