时间:2021-05-19
2018.12.12更新
在学习了CyclicBarrier之后发现,CyclicBarrier也可以实现跟CountDownLatch类似的功能,只需要在它的parties中多设置一个数,将主线程加入等待队列就可以了:
public static void main(String[] args) { ExecutorService pool = Executors.newCachedThreadPool(); int size = 3; // 设置参数时,线程实际执行数size+1,将main线程也加到等待队列中 CyclicBarrier cyclicBarrier = new CyclicBarrier(size + 1); for (int i = 0; i < size; i++) { int index = i; pool.submit(() -> { try { TimeUnit.SECONDS.sleep(index); System.out.println("第" + index + "位运动员准备好了"); cyclicBarrier.await(); } catch (Exception e) { e.printStackTrace(); } }); } try { //主线程也加入等待 cyclicBarrier.await(); } catch (Exception e) { e.printStackTrace(); } System.out.println(size + "位运动员都准备好了,可以起跑!"); }执行结果:
以下是原内容:
我在使用并发线程栅栏的时候发现了两种,分别是CyclicBarrier 和CountDownLatch。对于两者的对比的文章有很多,这里不再赘述。我来说下我的使用过程。
**需求:**有三位运动员,他们一起参加万米赛跑,但是他们准备的时间不同,要等他们都准备好了再开始一起跑。
使用CyclicBarrier 实现:
import java.util.concurrent.*;public class RunTest { public static void main(String[] args) { ExecutorService pool = Executors.newCachedThreadPool(); int size = 3; CyclicBarrier cyclicBarrier = new CyclicBarrier(size, () -> { System.out.println(size + "位运动员都准备好了,可以起跑!"); pool.shutdownNow(); }); for (int i = 0; i < size; i++) { int index = i; pool.submit(() -> { try { TimeUnit.SECONDS.sleep(index); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("第" + index + "位运动员准备好了"); try { cyclicBarrier.await(); } catch (InterruptedException | BrokenBarrierException e) { e.printStackTrace(); } }); } }}结果:
可以看到,三位运动员准备的时间分别是1s,2s,3s。系统等到他们都准备好了,再发出起跑的信号。在这里CyclicBarrier 做法是在自己的构造器中new了一个runnable,等待其他线程都执行完,再执行此runnable中的代码。
我们再看看CountDownLatch怎么实现:
import java.util.concurrent.*;public class RunTest { public static void main(String[] args) throws InterruptedException { ExecutorService pool = Executors.newCachedThreadPool(); CountDownLatch countDownLatch = new CountDownLatch(3); int size = 3; for (int i = 0; i < size; i++) { int index = i; pool.submit(() -> { try { TimeUnit.SECONDS.sleep(index); countDownLatch.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("第" + index + "位运动员准备好了"); }); } countDownLatch.await(); System.out.println(size + "位运动员都准备好了,可以起跑!"); }}结果同上:
我们可以看到,countDownLatch是采取阻塞主线程的方法实现了线程的统一。他内部有一个计数器,我们在执行完一次线程任务的时候需要手动的减一个数,在主线程中使用 **countDownLatch.await()**监控计数器的状态,知道计数器计到0为止,再执行主线程的代码。
在实际的开发中,我个人比较倾向于第二种方法,因为使用起来简单,完全满足我的需求。
以上这篇基于CyclicBarrier和CountDownLatch的使用区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前面的文章中我们讲到了CyclicBarrier、CountDownLatch的使用,这里再回顾一下CountDownLatch主要用在一个线程等待多个线程执行
Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解在java1.5中,提供了一些非常有用的辅助类来帮助我们
Semaphore也是一个同步器,和前面两篇说的CountDownLatch和CyclicBarrier不同,这是递增的,初始化的时候可以指定一个值,但是不
前言CountDownLatch和CyclicBarrier两个同为java并发编程的重要工具类,它们在诸多多线程并发或并行场景中得到了广泛的应用。但两者就其内
Thread类包含start()和run()方法,它们的区别是什么?本章将对此作出解答。本章内容包括:start()和run()的区别说明start()和run