时间:2021-05-19
题目:创建一个类,类中的数据成员时一棵二叉搜索树,对外提供的接口有添加结点和删除结点这两种方法。用户不关注二叉树的情况。要求我们给出这个类的结构以及实现类中的方法。
思路
添加结点:
添加结点其实很容易,我们只需要找到结点所行对应的位置就可以了,而且没有要求是平衡的二叉搜索树,因此每次添加结点都是在叶子结点上操作,不需要修改二叉搜索树整体的结构。要找出添加节点在二叉搜索树中的位置,可以用一个循环解决。判断插入结点与当前头结点的大小,如果大于头结点则继续搜索右子树,如果小于头结点则继续搜索左子树。直到搜索到叶子结点,此时进行插入结点操作。如果插入的结点等于二叉搜索树中当前某一结点的值,那么退出插入操作,并告知用户该结点已经存在。
删除结点:
删除结点比较麻烦,因为需要调整树的结构,这是因为删除结点并不一定发生在叶子结点。如果删除的是叶子结点,那么操作非常简单,只是做相应的删除就可以了,但如果删除的是非叶子结点,那么就需要调整二叉搜索树的结构。调整的策略有两个。假设当前需要删除的结点为A,
1.找出A结点左子树中的最大值结点B,将B调整到原先A的位置。
2.找出A结点右子树中的最小值结点C,将C调整到原先A的位置。
这其中涉及到许多复杂的指针操作,在下面的代码示例中并没有完成结点删除操作,等有空再补充研究一下。
代码示例
复制代码 代码如下:
#include<iostream>
#include<stdlib.h>
#include<cassert>
using namespace std;
//二叉树结点
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
};
class BST
{
public:
BST(int value);//构造函数
~BST();//析构函数
void AddNode(int value);//添加结点
void DeleteNode(int value);//删除结点
BinaryTreeNode* CreateBinaryTreeNode(int value);//创建一个二叉树结点
void InOrderPrintTree();//中序遍历
void InOrderPrintTree(BinaryTreeNode* pRoot);//中序遍历
BinaryTreeNode* GetMaxNode(BinaryTreeNode* pNode);//求二叉搜索树最大值
BinaryTreeNode* GetMinNode(BinaryTreeNode* pNode);//求二叉搜索树最小值
private:
BinaryTreeNode* pRoot;
};
//构造函数
BST::BST(int value)
{
pRoot=CreateBinaryTreeNode(value);
}
//析构函数
BST::~BST()
{
delete pRoot;
pRoot=NULL;
}
//创建二叉树结点
BinaryTreeNode* BST::CreateBinaryTreeNode(int value)
{
BinaryTreeNode* pNode=new BinaryTreeNode();
pNode->m_nValue=value;
pNode->m_pLeft=NULL;
pNode->m_pRight=NULL;
return pNode;
}
//求二叉搜索树最大值
BinaryTreeNode* BST::GetMaxNode(BinaryTreeNode* pNode)
{
assert(pNode!=NULL); // 使用断言,保证传入的头结点不为空
//最大值在右子树上,因此一直遍历右子树,让pNode等于其右子树;如果只有一个结点则直接返回pNode
while(pNode->m_pRight!=NULL)
{
pNode=pNode->m_pRight;
}
return pNode;
}
//求二叉搜索树最小值
BinaryTreeNode* BST::GetMinNode(BinaryTreeNode* pNode)
{
assert(pNode!=NULL); // 使用断言
//最小值在左子树上,整体思路跟求最大值相同。
while(pNode->m_pLeft!=NULL)
{
pNode=pNode->m_pLeft;
}
return pNode;
}
//二叉搜索树添加结点
void BST::AddNode(int value)
{
BinaryTreeNode* pInsertNode=CreateBinaryTreeNode(value);//初始化需要创建的结点。
BinaryTreeNode* pNode=pRoot;
while(true)
{
//如果插入的值在二叉搜索树中已经存在,则不进行插入操作,跳出循环。
if(pNode->m_nValue==value)
{
cout<<"结点值已经存在"<<endl;
break;
}
//寻找结点插入的位置,如果待插入结点小于当前头结点,则继续搜索左子树
else if(pNode->m_nValue > value)
{
if(pNode->m_pLeft==NULL)//如果当前头结点是叶子结点了,那么直接将待插入结点插入到左子树中,然后跳出循环
{
pNode->m_pLeft=pInsertNode;
break;
}
else//否则继续遍历其左子树
pNode=pNode->m_pLeft;
}
//思路跟上述相同
else if(pNode->m_nValue < value)
{
if(pNode->m_pRight==NULL)
{
pNode->m_pRight=pInsertNode;
break;
}
pNode=pNode->m_pRight;
}
}
}
//未完成
void BST::DeleteNode(int value)
{
BinaryTreeNode* pNode=pRoot;
while(true)
{
if(pRoot->m_nValue==value)//如果是头结点
{
if(pRoot->m_pLeft!=NULL)
{
BinaryTreeNode* pLeftMaxNode=GetMaxNode(pRoot->m_pLeft);
}
else if(pRoot->m_pRight!=NULL)
{
}
else
{
delete pRoot;
pRoot=NULL;
}
}
if(pNode->m_nValue==value)
{
if(pNode->m_pLeft!=NULL)
{
}
else if(pNode->m_pRight!=NULL)
{
}
else
{
}
}
}
}
void BST::InOrderPrintTree(BinaryTreeNode* pRoot)//中序遍历
{
if(pRoot!=NULL)
{
//如果左子树不为空,则遍历左子树
if(pRoot->m_pLeft!=NULL)
InOrderPrintTree(pRoot->m_pLeft);
//遍历左子树的叶子结点
cout<<"value of this node is "<<pRoot->m_nValue<<endl;
//如果右子树不为空,遍历右子树
if(pRoot->m_pRight!=NULL)
InOrderPrintTree(pRoot->m_pRight);
}
else
{
cout<<"this node is null."<<endl;
}
}
//因为需要使用递归来进行中序遍历,所以还需要调用一个带参数的中序遍历函数
void BST::InOrderPrintTree()//中序遍历
{
InOrderPrintTree(pRoot);
}
void main()
{
BST* b=new BST(10);//初始化类的时候定义了二叉搜索树的头结点,这样省去了头结点为空的判断
b->AddNode(6);
b->AddNode(14);
b->InOrderPrintTree();
system("pause");
}
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Java实现的二叉搜索树,并实现对该树的搜索,插入,删除操作(合并删除,复制删除)首先我们要有一个编码的思路,大致如下:1、查找:根据二叉搜索树的数据特点,我们
什么是二叉树二叉树就是树的每个节点最多只能有两个子节点什么是二叉搜索树二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插
二叉树是一种非常重要的数据结构。本文总结了二叉树的常见操作:二叉树的构建,查找,删除,二叉树的遍历(包括前序遍历、中序遍历、后序遍历、层次遍历),二叉搜索树的构
JavaScript中的搜索二叉树实现,供大家参考,具体内容如下二叉搜索树(BST,BinarySearchTree),也称二叉排序树或二叉查找树二叉搜索树是一
二叉排序树(BST)又称二叉查找树、二叉搜索树二叉排序树(BinarySortTree)又称二叉查找树。它或者是一棵空树;或者是具有下列性质的二叉树:1.若左子