时间:2021-05-26
JavaScript中的搜索二叉树实现,供大家参考,具体内容如下
二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树
二叉搜索树是一颗二叉树, 可以为空;如果不为空,满足以下性质:
二叉搜索树的操作
insert(key):向树中插入一个新的键
search(key):在树中查找一个键,如果结点存在,则返回true;如果不存在,则返回false
inOrderTraverse:通过中序遍历方式遍历所有结点
preOrderTraverse:通过先序遍历方式遍历所有结点
postOrderTraverse:通过后序遍历方式遍历所有结点
min:返回树中最小的值/键
max:返回树中最大的值/键
remove(key):从树中移除某个键
先序遍历
中序遍历
①中序遍历其左子树
②访问根结点
③中序遍历其右子树
后序遍历
①后序遍历其左子树
②后序遍历其右子树
③访问根结点
JavaScript 代码实现队列结构
// 创建BinarySearchTreefunction BinarySerachTree() { // 创建节点构造函数 function Node(key) { this.key = key this.left = null this.right = null } // 保存根的属性 this.root = null // 二叉搜索树相关的操作方法 // 向树中插入数据 BinarySerachTree.prototype.insert = function (key) { // 1.根据key创建对应的node var newNode = new Node(key) // 2.判断根节点是否有值 if (this.root === null) { this.root = newNode } else { this.insertNode(this.root, newNode) } } BinarySerachTree.prototype.insertNode = function (node, newNode) { if (newNode.key < node.key) { // 1.准备向左子树插入数据 if (node.left === null) { // 1.1.node的左子树上没有内容 node.left = newNode } else { // 1.2.node的左子树上已经有了内容 this.insertNode(node.left, newNode) } } else { // 2.准备向右子树插入数据 if (node.right === null) { // 2.1.node的右子树上没有内容 node.right = newNode } else { // 2.2.node的右子树上有内容 this.insertNode(node.right, newNode) } } } // 获取最大值和最小值 BinarySerachTree.prototype.min = function () { var node = this.root while (node.left !== null) { node = node.left } return node.key } BinarySerachTree.prototype.max = function () { var node = this.root while (node.right !== null) { node = node.right } return node.key } // 搜搜特定的值 BinarySerachTree.prototype.search = function (key) { var node = this.root while (node !== null) { if (node.key > key) { node = node.left } else if (node.key < key) { node = node.right } else { return true } } return false } // 删除节点 BinarySerachTree.prototype.remove = function (key) { // 1.获取当前的node var node = this.root var parent = null // 2.循环遍历node while (node) { if (node.key > key) { parent = node node = node.left } else if (node.key < key) { parent = node node = node.right } else { if (node.left == null && node.right == null) { } } } } BinarySerachTree.prototype.removeNode = function (node, key) { // 1.如果传入的node为null, 直接退出递归. if (node === null) return null // 2.判断key和对应node.key的大小 if (node.key > key) { node.left = this.removeNode(node.left, key) } } // 删除结点 BinarySerachTree.prototype.remove = function (key) { // 1.定义临时保存的变量 var current = this.root var parent = this.root var isLeftChild = true // 2.开始查找节点 while (current.key !== key) { parent = current if (key < current.key) { isLeftChild = true current = current.left } else { isLeftChild = false current = current.right } // 如果发现current已经指向null, 那么说明没有找到要删除的数据 if (current === null) return false } // 3.删除的结点是叶结点 if (current.left === null && current.right === null) { if (current == this.root) { this.root == null } else if (isLeftChild) { parent.left = null } else { parent.right = null } } // 4.删除有一个子节点的节点 else if (current.right === null) { if (current == this.root) { this.root = current.left } else if (isLeftChild) { parent.left = current.left } else { parent.right = current.left } } else if (current.left === null) { if (current == this.root) { this.root = current.right } else if (isLeftChild) { parent.left = current.right } else { parent.right = current.right } } // 5.删除有两个节点的节点 else { // 1.获取后继节点 var successor = this.getSuccessor(current) // 2.判断是否是根节点 if (current == this.root) { this.root = successor } else if (isLeftChild) { parent.left = successor } else { parent.right = successor } // 3.将删除节点的左子树赋值给successor successor.left = current.left } return true } // 找后继的方法 BinarySerachTree.prototype.getSuccessor = function (delNode) { // 1.使用变量保存临时的节点 var successorParent = delNode var successor = delNode var current = delNode.right // 要从右子树开始找 // 2.寻找节点 while (current != null) { successorParent = successor successor = current current = current.left } // 3.如果是删除图中15的情况, 还需要如下代码 if (successor != delNode.right) { successorParent.left = successor.right successor.right = delNode.right } } // 遍历方法 //handler为回调函数 // 先序遍历 BinarySerachTree.prototype.preOrderTraversal = function (handler) { this.preOrderTranversalNode(this.root, handler) } BinarySerachTree.prototype.preOrderTranversalNode = function (node, handler) { if (node !== null) { handler(node.key) this.preOrderTranversalNode(node.left, handler) this.preOrderTranversalNode(node.right, handler) } } // 中序遍历 BinarySerachTree.prototype.inOrderTraversal = function (handler) { this.inOrderTraversalNode(this.root, handler) } BinarySerachTree.prototype.inOrderTraversalNode = function (node, handler) { if (node !== null) { this.inOrderTraversalNode(node.left, handler) handler(node.key) this.inOrderTraversalNode(node.right, handler) } } // 后续遍历 BinarySerachTree.prototype.postOrderTraversal = function (handler) { this.postOrderTraversalNode(this.root, handler) } BinarySerachTree.prototype.postOrderTraversalNode = function (node, handler) { if (node !== null) { this.postOrderTraversalNode(node.left, handler) this.postOrderTraversalNode(node.right, handler) handler(node.key) } } }以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言:紧接着上篇二叉树的javascript实现,来说一下二叉树的遍历。本次一本正经的胡说八道,以以下这个二叉树为例子进行遍历:接着是要引入二叉树实现的代码:f
二叉排序树(BST)又称二叉查找树、二叉搜索树二叉排序树(BinarySortTree)又称二叉查找树。它或者是一棵空树;或者是具有下列性质的二叉树:1.若左子
本文实例讲述了javascript二叉搜索树实现方法。分享给大家供大家参考,具体如下:二叉搜索树:顾名思义,树上每个节点最多只有二根分叉;而且左分叉节点的值<右
什么是二叉树二叉树就是树的每个节点最多只能有两个子节点什么是二叉搜索树二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插
本文实例讲述了C语言判定一棵二叉树是否为二叉搜索树的方法。分享给大家供大家参考,具体如下:问题给定一棵二叉树,判定该二叉树是否是二叉搜索树(BinarySear