时间:2021-05-19
利用opencv来识别图片中的矩形。
其中遇到的问题主要是识别轮廓时矩形内部的形状导致轮廓不闭合。
1. 对输入灰度图片进行高斯滤波
2. 做灰度直方图,提取阈值,做二值化处理
3. 提取图片轮廓
4. 识别图片中的矩形
5. 提取图片中的矩形
1.对输入灰度图片进行高斯滤波
cv::Mat src = cv::imread("F:\\t13.bmp",CV_BGR2GRAY); cv::Mat hsv; GaussianBlur(src,hsv,cv::Size(5,5),0,0);2.做灰度直方图,提取阈值,做二值化处理
由于给定图片,背景是黑色,矩形背景色为灰色,矩形中有些其他形状为白色,可以参考为:
提取轮廓时,矩形外部轮廓并未闭合。因此,我们需要对整幅图做灰度直方图,找到阈值,进行二值化
处理。即令像素值(黑色)小于阈值的,设置为0(纯黑色);令像素值(灰色和白色)大于阈值的,设
置为255(白色)
3.提取图片轮廓
为了识别图片中的矩形,在识别之前还需要提取图片的轮廓。在经过滤波、二值化处理后,轮廓提取后的效果比未提取前的效果要好很多。
4.识别矩形
识别矩形的条件为:图片中识别的轮廓是一个凸边形、有四个顶角、所有顶角的角度都为90度。
vector<Point> approx; for (size_t i = 0; i < contours.size(); i++) { approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); if (approx.size() == 4 && fabs(contourArea(Mat(approx))) > 1000 && isContourConvex(Mat(approx))) { double maxCosine = 0; for( int j = 2; j < 5; j++ ) { double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); maxCosine = MAX(maxCosine, cosine); } if( maxCosine < 0.3 ) squares.push_back(approx); } }以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了OpenCV检测图像中矩形的具体代码,供大家参考,具体内容如下前言1.OpenCV没有内置的矩形检测的函数,如果想检测矩形,要自己去实现。2
本文实例为大家分享了OpenCV鼠标绘制截取矩形区域图像的具体代码,供大家参考,具体内容如下在opencv中利用鼠标绘制矩形,代码如下:#include#inc
OpenCV中circle与rectangle函数显示,只不过rectangle在图像中画矩形,circle在图像中画圆。voidcircle(Matimg,P
将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别。识别图像中的人脸#coding
基于OpenCV2.4.8和python2.7实现简单的手势识别。以下为基本步骤1.去除背景,提取手的轮廓2.RGB->YUV,同时计算直方图3.进行形态学滤波