OpenCV+python手势识别框架和实例讲解

时间:2021-05-22

基于OpenCV2.4.8和 python 2.7实现简单的手势识别。

以下为基本步骤

1.去除背景,提取手的轮廓

2. RGB->YUV,同时计算直方图

3.进行形态学滤波,提取感兴趣的区域

4.找到二值化的图像轮廓

5.找到最大的手型轮廓

6.找到手型轮廓的凸包

7.标记手指和手掌

8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状

提取手的轮廓 cv2.findContours()

找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点,包括手掌的中心,手指的相对位置

特征字典主要包括以下几个方面:名字,手掌中心点,手掌的直径,手指的坐标点,手指的个数,每个手指之间的角度

例如:

# BEGIN ------------------------------------#V=gesture("V")V.set_palm((475,225),45)V.set_finger_pos([(490,90),(415,105)])V.calc_angles()dict[V.getname()]=V# END --------------------------------------#

最终的识别结果如下:

示例代码

frame=hand_threshold(fg_frame,hand_histogram) contour_frame=np.copy(frame) contours,hierarchy=cv2.findContours(contour_frame,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) found,hand_contour=hand_contour_find(contours) if(found): hand_convex_hull=cv2.convexHull(hand_contour) frame,hand_center,hand_radius,hand_size_score=mark_hand_center(frame_original,hand_contour) if(hand_size_score): frame,finger,palm=mark_fingers(frame,hand_convex_hull,hand_center,hand_radius) frame,gesture_found=find_gesture(frame,finger,palm) else: frame=frame_original

以上这篇OpenCV+python手势识别框架和实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章