时间:2021-05-19
离散余弦变换/Discrete cosine transform,
根据离散傅里叶变换的性质,实偶函数的傅里叶变换只含实的余弦项,而数字图像都是实数矩阵,因此构造了一种实数域的变换——离散余弦变换(DCT)。
离散余弦变换具有很强的”能量集中”特性,左上方称为低频数据,右下方称为高频数据。而大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分。因此也可以在图像压缩算法中用来进行有损压缩。(如JPEG压缩编码)
OpenCV中dct()
在OpenCV中有专门进行离散余弦变换的函数dct()。
dct()函数执行1D或2D浮点数组的正向或反向离散余弦变换(DCT):
N个元素的一维向量的正余弦变换:
该函数通过查看输入数组的标志和大小来选择操作模式:
如果(flags&DCT_INVERSE)== 0,则函数执行向前的1D或2D变换。否则是一个逆1D或2D变换。
如果(flags&DCT_ROWS)!= 0,则函数执行每行的一维变换。
如果数组是单列或单行,则该函数执行一维变换。
如果以上都不是,则该函数执行2D变换。
目前dct支持偶数大小的数组(2,4,6 …)。对于数据分析和逼近,可以在必要时填充数组。另外,函数性能对数组大小的依赖性非常大,而不是单调的。在当前实现中,大小为N的矢量的DCT通过大小为N / 2的矢量的DFT来计算。因此,最佳DCT大小N1 > = N可以计算为:
size_t getOptimalDCTSize(size_t N){return 2 * getOptimalDFTSize((N + 1)/ 2); }N1 = getOptimalDCTSize(N);dct()参数
src 输入浮点数组。
dst 输出与src大小和类型相同的数组。
flags 转换标志
opencv示例
#include <opencv2\opencv.hpp> #include <opencv2\core\core.hpp>#include <opencv2\core\mat.hpp>#include <iostream> using namespace std; using namespace cv; int main(){ Mat src = imread("E:\\image\\sophie.jpg", 0); if(src.empty()) { cout << "the image is not exist" << endl; return -1; } resize(src, src, Size(512, 512)); src.convertTo(src, CV_32F, 1.0/255); Mat srcDCT; dct(src, srcDCT); imshow("src", src); imshow("dct", srcDCT); waitKey(); return 0;}可以看到因为第一幅图像的细节较少,因此DFT变换数据主要集中在左上方(低频区域),高频区域大部分为0:
而第二幅图像相对而言具有较为丰富的细节,因此相对于第一幅图像中间区域出现了大量的非0值:
以上这篇opencv3/C++ 离散余弦变换DCT方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了C++实现数据文件存储与加载的具体代码,供大家参考,具体内容如下首先请先确认已经安装好了opencv3及以上版本。#include#incl
本文采用OpenCV3和Python3来实现静态图片的人脸识别,采用的是Haar文件级联。首先需要将OpenCV3源代码中找到data文件夹下面的haarcas
在多数的现代语音识别系统中,人们都会用到频域特征。梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征。本文重点介绍如
才发现Opencv3.1.0已经发布了,刚好电脑重装系统就配置了一下,发现比Opencv2的配置过程更加简单,而且已经适配了vs2015。下载安装Opencv3
相比C++而言,Python适合做原型。本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处。这篇文章介绍在