时间:2021-05-19
图像滤波在opencv中可以有多种实现形式
自定义滤波
如使用3×3的掩模:
对图像进行处理.
使用函数filter2D()实现
#include<opencv2/opencv.hpp>using namespace cv;int main(){ //函数调用filter2D功能 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input", src); src.copyTo(dst); Mat kernel = (Mat_<int>(3,3)<<1,1,1,1,1,-1,-1,-1,-1); double t = (double)getTickCount(); filter2D(src, dst, src.depth(), kernel); std::cout<<((double)getTickCount()-t)/getTickFrequency()<<std::endl; namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output", dst); printf("%d",src.channels()); waitKey(); return 0;}通过像素点操作实现
#include<opencv2/opencv.hpp>using namespace cv;int main(){ Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); for(int row = 1; row<(src.rows - 1); row++) { const uchar* previous = src.ptr<uchar>(row - 1); const uchar* current = src.ptr<uchar>(row); const uchar* next = src.ptr<uchar>(row + 1); uchar* output = dst.ptr<uchar>(row); for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++) { *output = saturate_cast<uchar>(1 * current[col] + previous[col] - next[col] + current[col - src.channels()] - current[col + src.channels()]); output++; } } namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0;}特定形式滤波
常用的有:
blur(src,dst,Size(5,5));均值滤波
GaussianBlur(src,dst,Size(5,5),11,11);高斯滤波
medianBlur(src,dst,5);中值滤波(应对椒盐噪声)
bilateralFilter(src,dst,2,0.5,2,4);双边滤波(保留边缘)
#include<opencv2/opencv.hpp>using namespace cv;int main(){ Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); //均值滤波 blur(src,dst,Size(5,5)); //中值滤波 //medianBlur(src,dst,5); namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0;}以上这篇opencv3/C++图像滤波实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波.给图像增加噪声:importcv2importnumpy
本文实例为大家分享了C++实现数据文件存储与加载的具体代码,供大家参考,具体内容如下首先请先确认已经安装好了opencv3及以上版本。#include#incl
本文采用OpenCV3和Python3来实现静态图片的人脸识别,采用的是Haar文件级联。首先需要将OpenCV3源代码中找到data文件夹下面的haarcas
opencv这个工具来进行图像处理。大致是使用C++语言编写程序实现识别算法的实现,所以首先就要进行opencv与VS环境的配置。Shaine属于那种半路出家之
Android开发过程中为了实现代码的高效性,通常要调用本地c++代码,JNI是java语言提供的和c/c++相互沟通的机制,在使用opencv做图像处理时,通