shuffle的关键阶段sort(Map端和Reduce端)源码分析

时间:2021-05-19

源码中有这样一段代码

1. Map端排序获取的比较器

public RawComparator getOutputKeyComparator() { // 获取mapreduce.job.output.key.comparator.class,必须是RawComparator类型,如果没设置,是null Class<? extends RawComparator> theClass = getClass( JobContext.KEY_COMPARATOR, null, RawComparator.class); // 如果用户自定义了这个参数,那么实例化用户自定义的比较器 if (theClass != null) return ReflectionUtils.newInstance(theClass, this); // 默认情况,用户是没用自定义这个参数 // 判断Map输出的key,是否是WritableComparable的子类 // 如果是,调用当前类的内部的Comparator! return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class), this); }

总结: 如何对感兴趣的数据进行排序?

① 数据必须作为key

② 排序是框架自动排序,我们提供基于key的比较器,也就是Comparator,必须是RawComparator类型

a) 自定义类,实现RawComparator,重写compare()

指定mapreduce.job.output.key.comparator.class为自定义的比较器类型

b)key实现WritableComparable(推荐)

③ 实质都是调用相关的comparaTo()方法,进行比较

2. Reduce端进行分组的比较器

RawComparator comparator = job.getOutputValueGroupingComparator();// 获取mapreduce.job.output.group.comparator.class,必须是RawComparator类型// 如果没用设置,直接获取MapTask排序使用的比较器// 也是比较keypublic RawComparator getOutputValueGroupingComparator() { Class<? extends RawComparator> theClass = getClass( JobContext.GROUP_COMPARATOR_CLASS, null, RawComparator.class); if (theClass == null) { return getOutputKeyComparator(); } // 如果设置了,就使用设置的比较器 return ReflectionUtils.newInstance(theClass, this); }

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章