java编程求二叉树最大路径问题代码分析

时间:2021-05-19

题目:

Binary Tree Maximum Path Sum

Given a binary tree, find the maximum path sum.

The path may start and end at any node in the tree.

For example:
Given the below binary tree,

1 / \ 2 3

Return 6.

节点可能为负数,寻找一条最路径使得所经过节点和最大。路径可以开始和结束于任何节点但是不能走回头路。

这道题虽然看起来不同寻常,但是想一下,可以发现不外乎二叉树的遍历+简单的动态规划思想。

我们可以把问题拆分开:即便最后的最大路径没有经过根节点,它必然也有自己的“最高点”,因此我们只要针对所有结点,求出:如果路径把这个节点作为“最高点”,路径最长可达多少?记为max。然后在max中求出最大值MAX即为所求结果。和“求整数序列中的最大连续子序列”一样思路。

下面就是找各个“最高点”对应的max之间的关系了。

我们拿根节点为例,对于经过根节点的最大路径的计算方式为:

我们找出左子树中以左孩子为起点的最大路径长度a,和右子树中以右孩子为起点的最大路径长度b。然后这个点的max=MAX(a+b+node.val,a+node.val,b+node.val,node.val)

因此我们定义一个函数来算上面的a或者b,它的参数是一个节点,它的返回值是最大路径长度,但是这个路径的起点必须是输入节点,而且路径必须在以起点为根节点的子树上。

那么函数func(node)的return值可以这样定义:returnMAX(func(node.left)+node.val,func(node.right)+node.val,node.val)

终止条件是node==null,直接返回0。

接着我们发现上述计算max和求出MAX的过程完全可以放到func(node)里去。

按照这个思路的代码,maxPathSumCore就是上面func(node)的实现:

/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution { public: int maxPathSum(TreeNode *root) { maxPathSumCore(root); return MAX; } int maxPathSumCore(TreeNode *node) { if(NULL == node) return 0; int a = maxPathSumCore(node -> left); int b = maxPathSumCore(node -> right); if((a+b+node->val) > MAX) MAX = (a+b+node->val); if((a+node->val) > MAX) MAX = (a+node->val); if((b+node->val) > MAX) MAX = (b+node->val); if(node->val > MAX) MAX = node->val; int maxViaThisNode = ((a + node->val) > node->val ? (a + node->val) : node->val); return (maxViaThisNode > (b + node->val) ? maxViaThisNode : (b + node->val)); } private: int MAX= -99999999;};

时间复杂度 O(n),n为总节点数。

总结

以上就是本文关于java编程求二叉树最大路径问题代码分析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章