时间:2021-05-20
用JFreeChart绘制光滑曲线,利用最小二乘法数学原理计算,供大家参考,具体内容如下
绘制图形:
代码:
FittingCurve.java
package org.jevy; import java.util.ArrayList; import java.util.List; import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.ValueAxis; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.XYPlot; import org.jfree.chart.renderer.xy.XYItemRenderer; import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer; import org.jfree.data.xy.XYDataset; import org.jfree.data.xy.XYSeries; import org.jfree.data.xy.XYSeriesCollection; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; public class FittingCurve extends ApplicationFrame{ List<Double> equation = null; //设置多项式的次数 int times = 2; public FittingCurve(String title) { super(title); //使用最小二乘法计算拟合多项式中各项前的系数。 //多项式的次数从高到低,该函数需要的参数:x轴数据<List>,y轴数据<List>,多项式的次数<2> this.equation = this.getCurveEquation(this.getData().get(0),this.getData().get(1),this.times); //生成Chart JFreeChart chart = this.getChart(); ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); chartPanel.setMouseZoomable(true, false); setContentPane(chartPanel); } public static void main(String[] args) { // TODO Auto-generated method stub FittingCurve demo = new FittingCurve("XYFittingCurve"); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } //生成chart public JFreeChart getChart(){ //获取X和Y轴数据集 XYDataset xydataset = this.getXYDataset(); //创建用坐标表示的折线图 JFreeChart xyChart = ChartFactory.createXYLineChart( "二次多项式拟合光滑曲线", "X轴", "Y轴", xydataset, PlotOrientation.VERTICAL, true, true, false); //生成坐标点点的形状 XYPlot plot = (XYPlot) xyChart.getPlot(); XYItemRenderer r = plot.getRenderer(); if (r instanceof XYLineAndShapeRenderer) { XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) r; renderer.setBaseShapesVisible(false);//坐标点的形状是否可见 renderer.setBaseShapesFilled(false); } ValueAxis yAxis = plot.getRangeAxis(); yAxis.setLowerMargin(2); return xyChart; } //数据集按照逻辑关系添加到对应的集合 public XYDataset getXYDataset() { //预设数据点数据集 XYSeries s2 = new XYSeries("点点连线"); for(int i=0; i<data.get(0).size(); i++){ s2.add(data.get(0).get(i),data.get(1).get(i)); } // 拟合曲线绘制 数据集 XYSeries s1 = new XYSeries("拟合曲线"); //获取拟合多项式系数,equation在构造方法中已经实例化 List<Double> list = this.equation; //获取预设的点数据 List<List<Double>> data = this.getData(); //get Max and Min of x; List<Double> xList = data.get(0); double max =this.getMax(xList); double min = this.getMin(xList); double step = max - min; double x = min; double step2 = step/800.0; //按照多项式的形式 还原多项式,并利用多项式计算给定x时y的值 for(int i=0; i<800; i++){ x = x + step2; int num = list.size()-1; double temp = 0.0; for(int j=0; j<list.size(); j++){ temp = temp + Math.pow(x, (num-j))*list.get(j); } s1.add(x, temp); } //把预设数据集合拟合数据集添加到XYSeriesCollection XYSeriesCollection dataset = new XYSeriesCollection(); dataset.addSeries(s1); dataset.addSeries(s2); return dataset; } //模拟设置绘图数据(点) public List<List<Double>> getData(){ //x为x轴坐标 List<Double> x = new ArrayList<Double>(); List<Double> y = new ArrayList<Double>(); for(int i=0; i<10; i++){ x.add(-5.0+i); } y.add(26.0); y.add(17.1); y.add(10.01); y.add(5.0); y.add(2.01); y.add(1.0); y.add(2.0); y.add(5.01); y.add(10.1); y.add(17.001); List<List<Double>> list = new ArrayList<List<Double>>(); list.add(x); list.add(y); return list; } //以下代码为最小二乘法计算多项式系数 //最小二乘法多项式拟合 public List<Double> getCurveEquation(List<Double> x, List<Double> y, int m){ if(x.size() != y.size() || x.size() <= m+1){ return new ArrayList<Double>(); } List<Double> result = new ArrayList<Double>(); List<Double> S = new ArrayList<Double>(); List<Double> T = new ArrayList<Double>(); //计算S0 S1 …… S2m for(int i=0; i<=2*m; i++){ double si = 0.0; for(double xx:x){ si = si + Math.pow(xx, i); } S.add(si); } //计算T0 T1 …… Tm for(int j=0; j<=m; j++){ double ti = 0.0; for(int k=0; k<y.size(); k++){ ti = ti + y.get(k)*Math.pow(x.get(k), j); } T.add(ti); } //把S和T 放入二维数组,作为矩阵 double[][] matrix = new double[m+1][m+2]; for(int k=0; k<m+1; k++){ double[] matrixi = matrix[k]; for(int q=0; q<m+1; q++){ matrixi[q] = S.get(k+q); } matrixi[m+1] = T.get(k); } for(int p=0; p<matrix.length; p++){ for(int pp=0; pp<matrix[p].length; pp++){ System.out.print(" matrix["+p+"]["+pp+"]="+matrix[p][pp]); } System.out.println(); } //把矩阵转化为三角矩阵 matrix = this.matrixConvert(matrix); //计算多项式系数,多项式从高到低排列 result = this.MatrixCalcu(matrix); return result; } //矩阵转换为三角矩阵 public double[][] matrixConvert(double[][] d){ for(int i=0; i<d.length-1; i++){ double[] dd1 = d[i]; double num1 = dd1[i]; for(int j=i; j<d.length-1;j++ ){ double[] dd2 = d[j+1]; double num2 = dd2[i]; for(int k=0; k<dd2.length; k++){ dd2[k] = (dd2[k]*num1 - dd1[k]*num2); } } } for(int ii=0; ii<d.length; ii++){ for(int kk=0; kk<d[ii].length; kk++) System.out.print(d[ii][kk]+" "); System.out.println(); } return d; } //计算一元多次方程前面的系数, 其排列为 xm xm-1 …… x0(多项式次数从高到低排列) public List<Double> MatrixCalcu(double[][] d){ int i = d.length -1; int j = d[0].length -1; List<Double> list = new ArrayList<Double>(); double res = d[i][j]/d[i][j-1]; list.add(res); for(int k=i-1; k>=0; k--){ double num = d[k][j]; for(int q=j-1; q>k; q--){ num = num - d[k][q]*list.get(j-1-q); } res = num/d[k][k]; list.add(res); } return list; } //获取List中Double数据的最大最小值 public double getMax(List<Double> data){ double res = data.get(0); for(int i=0; i<data.size()-1; i++){ if(res<data.get(i+1)){ res = data.get(i+1); } } return res; } public double getMin(List<Double> data){ double res = data.get(0); for(int i=0; i<data.size()-1; i++){ if(res>data.get(i+1)){ res = data.get(i+1); } } return res; } }以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了C#画笔Pen绘制光滑模式曲线的方法。分享给大家供大家参考。具体实现方法如下:usingSystem;usingSystem.Collection
很多时候我们数据处理的时候要画坐标图,下面我用第三方库matplotlib以及scipy绘制光滑的曲线图需要安装的库有matplotlib,scipy,nump
一、前言之前用LineRender实现过这个动态曲线的绘制,使用这个实在太不方便了,一直寻思怎么在一张图片上通过控制图片的像素值实现曲线的动态绘制。参考了Uni
以前用actionscript写动态绘制三角函数曲线,其实php输出三角函数曲线也很简单。复制代码代码如下:
水流波动的波形都是三角波,曲线是正余弦曲线,但是Android中没有提供绘制正余弦曲线的API,好在Path类有个绘制贝塞尔曲线的方法quadTo,绘制出来的是