时间:2021-05-20
树是一种重要的非线性数据结构,二叉树是树型结构的一种重要类型。本学年论文介绍了二叉树的定义,二叉树的存储结构,二叉树的相关术语,以此引入二叉树这一概念,为展开二叉树的基本操作做好理论铺垫。二叉树的基本操作主要包含以下几个模块:二叉树的遍历方法,计算二叉树的结点个数,计算二叉树的叶子结点个数,二叉树深度的求解等内容。
前序遍历(递归&非递归)
中序遍历(递归&非递归)
后序遍历(递归&非递归)
//后序非递归 //后序遍历可能会出现死循环,所以要记录下前一个访问的节点 void PostOrder() { stack<Node*> s; Node *cur = _root; Node *prev = NULL; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } Node *tmp = s.top(); if (tmp->_right && tmp->_right != prev) { cur = tmp->_right; } else { cout << tmp->_data << " "; prev = tmp; s.pop(); } } cout << endl; } //后序递归 void PostOrderR() { _PostOrder(_root); cout << endl; } void _PostOrder(Node *root) { if (root == NULL) return; _PostOrder(root->_left); _PostOrder(root->_right); cout << root->_data << " "; }层序遍历
从根节点开始,依次访问每层结点。
利用队列先进先出的特性,把每层结点从左至右依次放入队列。
求二叉树的高度
size_t Depth() { return _Depth(_root); } size_t _Depth(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else { size_t leftDepth = _Depth(root->_left) + 1; size_t rightDepth = _Depth(root->_right) + 1; return leftDepth > rightDepth ? leftDepth : rightDepth; } }求叶子节点的个数
size_t LeafSize() { return _LeafSize(_root); } size_t _LeafSize(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else return _LeafSize(root->_left) + _LeafSize(root->_right); }求二叉树第k层的节点个数
size_t GetKLevel(int k) { return _GetKLevel(_root, k); } size_t _GetKLevel(Node *root, int k) { if (root == NULL) return 0; else if (k == 1) return 1; else return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1); }完整代码如下:
template<class T>struct BinaryTreeNode{ T _data; BinaryTreeNode *_left; BinaryTreeNode *_right; BinaryTreeNode(const T& d) :_data(d) , _left(NULL) , _right(NULL) {}};template<class T>class BinaryTree{public: typedef BinaryTreeNode<T> Node; BinaryTree() :_root(NULL) {} BinaryTree(T *arr, size_t n, const T& invalid) { size_t index = 0; _root = _CreateBinaryTree(arr, n, invalid, index); } BinaryTree(const BinaryTree<T>& t) :_root(NULL) { _root = _CopyTree(t._root); } BinaryTree<T>& operator=(const BinaryTree<T>& t) { if (this != t) { Node *tmp = new Node(t._root); if (tmp != NULL) { delete _root; _root = tmp; } } return *this; } ~BinaryTree() { _DestroyTree(_root); cout << endl; } //前序非递归 void PrevOrder() { stack<Node*> s; Node *cur = _root; while (cur || !s.empty()) { while (cur) { cout << cur->_data << " "; s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); s.pop(); cur = tmp->_right; } cout << endl; } //前序递归 void PrevOrderR() { _PrevOrder(_root); cout << endl; } //中序非递归 void InOrder() { stack<Node*> s; Node *cur = _root; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); cout << tmp->_data << " "; s.pop(); cur = tmp->_right; } cout << endl; } //中序递归 void InOrderR() { _InOrder(_root); cout << endl; } //后序非递归 //后序遍历可能会出现死循环,所以要记录下前一个访问的节点 void PostOrder() { stack<Node*> s; Node *cur = _root; Node *prev = NULL; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } Node *tmp = s.top(); if (tmp->_right && tmp->_right != prev) { cur = tmp->_right; } else { cout << tmp->_data << " "; prev = tmp; s.pop(); } } cout << endl; } //后序递归 void PostOrderR() { _PostOrder(_root); cout << endl; } void LevelOrder() //利用队列!!! { queue<Node*> q; Node *front = NULL; //1.push根节点 if (_root) { q.push(_root); } //2.遍历当前节点,push当前节点的左右孩子,pop当前节点 //3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空 while (!q.empty()) { front = q.front(); cout << front->_data << " "; if (front->_left) q.push(front->_left); if (front->_right) q.push(front->_right); q.pop(); } cout << endl; } size_t Size() { return _Size(_root); } size_t LeafSize() { return _LeafSize(_root); } size_t GetKLevel(int k) { return _GetKLevel(_root, k); } size_t Depth() { return _Depth(_root); } Node* Find(const T& d) { return _Find(_root, d); }protected: Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index) { Node *root = NULL; if (index < n && arr[index] != invalid) { root = new Node(arr[index]); index++; root->_left = _CreateBinaryTree(arr, n, invalid, index); index++; root->_right = _CreateBinaryTree(arr, n, invalid, index); } return root; } Node* _CopyTree(Node *root) { Node *newRoot = NULL; if (root) { newRoot = new Node(root->_data); newRoot->_left = _CopyTree(root->_left); newRoot->_right = _CopyTree(root->_right); } return newRoot; } void _DestroyTree(Node *root) { if (root) { _Destroy(root->_left); _Destroy(root->_right); delete root; } } void _PrevOrder(Node *root) { if (root == NULL) //必须有递归出口!!! return; cout << root->_data << " "; _PrevOrder(root->_left); _PrevOrder(root->_right); } void _InOrder(Node *root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_data << " "; _InOrder(root->_right); } void _PostOrder(Node *root) { if (root == NULL) return; _PostOrder(root->_left); _PostOrder(root->_right); cout << root->_data << " "; } size_t _Size(Node *root) { if (root == NULL) return 0; else return _Size(root->_left) + _Size(root->_right) + 1; } size_t _LeafSize(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else return _LeafSize(root->_left) + _LeafSize(root->_right); } size_t _GetKLevel(Node *root, int k) { if (root == NULL) return 0; else if (k == 1) return 1; else return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1); } size_t _Depth(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else { size_t leftDepth = _Depth(root->_left) + 1; size_t rightDepth = _Depth(root->_right) + 1; return leftDepth > rightDepth ? leftDepth : rightDepth; } } Node* _Find(Node *root, const T& d) { if (root == NULL) return NULL; else if (root->_data == d) return root; else if (Node *ret = _Find(root->_left, d)) return ret; else _Find(root->_right, d); }protected: Node *_root;};以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
C++数据结构二叉树(前序/中序/后序递归、非递归遍历)二叉树的性质:二叉树是一棵特殊的树,二叉树每个节点最多有两个孩子结点,分别称为左孩子和右孩子。例:实例代
C++数据结构完全二叉树的判断完全二叉树(CompleteBinaryTree):若设二叉树的深度为h,除第h层外,其他各层(1~h-1)的节点数都达到最大个数
本文实例讲述了C++非递归队列实现二叉树的广度优先遍历。分享给大家供大家参考。具体如下:广度优先非递归二叉树遍历(或者说层次遍历):voidwidthFirst
代码如下所示,不足之处,还望指正!复制代码代码如下://BinaryTree.cpp:定义控制台应用程序的入口点。//C++实现链式二叉树,在二叉树中找出和为某
什么是二叉树,这里不再介绍,可以自行百度:二叉树。在这里利用java实现“表达式二叉树”。表达式二叉树的定义第一步先要搞懂表达式二叉树是个什么东东?举个栗子,表