时间:2021-05-22
最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单
pip install tensorboardX
然后在代码里导入
from tensorboardX import SummaryWriter
然后声明一下自己将loss写到哪个路径下面
writer = SummaryWriter('./log')
然后就可以愉快的写loss到你得这个writer了
niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)
其中,add_scalars是将不同得变量添加到同一个图下,图的名称是add_scalars得第一个变量
然后为这个图中不同得曲线添加不同得标题,上面这一行代码
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)
后面得dict中得key是曲线的名称,后面的value是对应得append的值,再后面得niter是x坐标,这句话得意思就相当于,对于图名称为args.result_path + 'Train_val_loss'的图,对曲线名称为args.result_path+'train_loss'添加新的点,这个点为(niter, loss.data.item())
同样的,我可以画出val的loss
niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'val_loss': mean_loss}, niter)
writer保存到了我们刚刚声明的路径'./log‘下面,然后终端启动tensorboard
tensorboard --logdir ./log --port 8890
不会用得进行tensorboard --help即可
然后进行端口映射就行了
实际上在使用的过程中,我发现了,如果你要保存的结果在各个子文件夹内,然后你在父文件夹运行tensorboard,就可以在浏览器看到各种结果,而不必再进行不同的端口映射
比如上面这个,我的resnet文件夹下有不同的我writer写入的文件,在父目录下启动tensorboard之后,
没毛病!
补充拓展:pytorch产生loss的计算图代码
废话不多说,直接上代码
import torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module): def __init__(self): super(Net,self).__init__() self.conv1=nn.Conv2d(1,6,5) self.conv2=nn.Conv2d(6,16,5) self.fc1=nn.Linear(16*5*5,120) self.fc2=nn.Linear(120,84) self.fc3=nn.Linear(84,10) def forward(self,x): x=F.max_pool2d(F.relu(self.conv1(x)),(2,2)) x=F.max_pool2d(F.relu(self.conv2(x)),2) x=x.view(x.size()[0],-1) print(x) x=F.relu(self.fc1(x)) x=F.relu(self.fc2(x)) x=self.fc3(x) return xnet=Net()#params=list(net.parameters())#for name,parameters in net.named_parameters():# print(name,':',parameters.size())#print(len(params))#print(net)input=Variable(t.randn(1,1,32,32))output=net(input)#out.size()target=Variable(t.arange(0,10))criterion=nn.MSELoss()loss=criterion(output,target)loss.grad_fn以上这篇pytorch使用tensorboardX进行loss可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言Tensorflow中可以使用tensorboard这个强大的工具对计算图、loss、网络参数等进行可视化。本文并不涉及对tensorboard使用的介绍,
基于python代码的3D地图可视化,供大家参考,具体内容如下介绍使用Python对地图进行3D可视化。以地图为地图,可以在三维空间对轨迹、点进行可视化。库我们
如何将pytorch中mnist数据集的图像可视化及保存导出一些库importtorchimporttorchvisionimporttorch.utils.d
刚入pytorch的坑,代码还没看太懂。之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教。首先说说,我们如何可视化模型。在
前言之前我们分享过用Python进行可视化的9种常见方式。其实我们还能让可视化图形逼格更高一些,今天就分享一下如何让可视化秀起来:用Python和matplot