时间:2021-05-22
最近一段时间一直在研究yolo物体检测,基于网络上很少有yolo的分类预训练和yolo9000的联合数据的训练方法,经过本人的真实实验,对这两个部分做一个整理(本篇介绍yolo的分类预训练)
1、数据准备
1000类的Imagenet图片数据
因为Imagenet不同的类别数据都是单独放在一个文件夹中,并且有特定的命名,如‘n00020287',所以在做分类时我们不需要去制作特定的标签,只要训练的图片的path中包含自身的类别标签,而不含有其他类的标签即可。
制作用于训练的数据列表*classf_list.txt
2、分类标签制作
制作所有类别的标签列表new_label.txt和标签对应的类别名称的列表new_name.txt
new_label.txt
new_name.txt(训练时不需要,但是测试时可以显示出具体的类别)
3、修改cfg/.data配置文件(*classf.data)
classes=1000train =/home/research/disk2/wangshun/yolo1700/darknet/coco/filelist/classf_list.txtlabels=data/new_label.txtnames=data/new_name.txtbackup=backuptop=5修改网络配置文件(classf.cfg)
[net]#Trainingbatch=64subdivisions=1width=416height=416channels=3momentum=0.9decay=0.0005angle=0saturation = 1.5exposure = 1.5hue=.1max_crop = 512learning_rate=0.001burn_in=1000max_batches = 1000000000policy=stepssteps=350000,500000,750000,1200000scales=.1,.1,.1,.1[convolutional]batch_normalize=1filters=16size=3stride=1pad=1activation=leaky[maxpool]size=2stride=2[convolutional]batch_normalize=1filters=32size=3stride=1pad=1activation=leaky[maxpool]size=2stride=2[convolutional]batch_normalize=1filters=64size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=32size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=64size=3stride=1pad=1activation=leaky[maxpool]size=2stride=2[convolutional]batch_normalize=1filters=128size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=64size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=128size=3stride=1pad=1activation=leaky[maxpool]size=2stride=2[convolutional]batch_normalize=1filters=64size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=128size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=256size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=128size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=256size=3stride=1pad=1activation=leaky[maxpool]size=2stride=2[convolutional]batch_normalize=1filters=256size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=128size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=256size=3stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=128size=1stride=1pad=1activation=leaky[convolutional]batch_normalize=1filters=256size=3stride=1pad=1activation=leaky#######[convolutional]batch_normalize=1size=1stride=1pad=1filters=128activation=leaky[convolutional]batch_normalize=1size=3stride=1pad=1filters=256activation=leaky[convolutional]batch_normalize=1size=3stride=1pad=1filters=256activation=leaky[convolutional]filters=1000size=1stride=1pad=1activation=leaky[avgpool][softmax]groups = 1[cost]type=sse当然中间的网络层是我自己修改的网络。
5. 训练
./darknet classifier train cfg/classf.data cfg/classf.cfg -gpus 0,3(选择自己机器的gpu)
6 . 测试
./darknet classifier predict cfg/classf.data cfg/classf.cfg backup/classf.weights data/eagle.jpg
当然这只是刚刚训练了2000次测试的结果,只是测试,还需要继续训练。
以上这篇使用darknet框架的imagenet数据分类预训练操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文主要介绍通过预训练的ImageNet模型实现图像分类,主要使用到的网络结构有:VGG16、InceptionV3、ResNet50、MobileNet。代码
问题keras使用预训练模型vgg16分类,损失和准确度不变。细节:使用keras训练一个两类数据,正负比例1:3,在vgg16后添加了几个全链接并初始化了。并
如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务#增加一个通道w=layers[0].weightlayers[0]=nn
对于使用已经训练好的模型,比如VGG,RESNET等,keras都自带了一个keras.applications.imagenet_utils.decode_p
预训练模型在不同深度学习框架中的转换是一种常见的任务。今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下。核心转换函数如下所示:defconvert_fr