时间:2021-05-22
摘要在进行数据分析与清理中,我们可能常常需要在数据集中去掉某些异常值。具体来说,看看下面的例子。
0.导入我们需要使用的包
import pandas as pd
pandas是很常用的数据分析,数据处理的包。anaconda已经有这个包了,纯净版python的可以自行pip安装。
1.去掉某些具体值
数据集df中,对于属性appPlatform(最后一列),我们想删除掉取值为2的那些样本。如何做?非常简单。
import pandas as pd
df[(True-df['appPlatform'].isin([2]))]当然,有时候我们需要去掉不止一个值,这个时候只需要在isin([])的列表中添加。更具体来说,例如,对于appID这个属性,我们想去掉appID=278和appID=382的样本。
df[(True-df['appID'].isin([278,382]))]另外,我们有时候并不只是考虑某一列,还需要考虑另外若干列的情况。例如,我们需要过滤掉appPlatform=2而且appID=278和appID=382的样本呢?非常简单。
df[(True-df['appID'].isin([278,382]))&(True-df['appPlatform'].isin([2]))]其实,在这里我们看到,就是由两部分组成的,第一部分就是appID中等于278和382的,另外一部分就是appPlatform中等于2的。两者取逻辑关系 与(&)
2.过滤掉某个范围的值
上面我们是了解了如何取掉某个具体值,下面,我们要看看如何过滤掉某个范围的值。对于数据集df,我们想过滤掉creativeID(第一列)中ID值大于10000的样本。
df[df['creativeID']<=10000]另外,如果要考虑多列的话,其实和上面一样,将两种情况做逻辑与(&)就可以,不过值得注意的是,每个条件要用括号()括起来。
以上所述是小编给大家介绍的pandas如何去掉、过滤数据集中的某些值或者某些行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
开始之前,pandas中DataFrame删除对象可能存在几种情况1、删除具体列2、删除具体行3、删除包含某些数值的行或者列4、删除包含某些字符、文字的行或者列
Pandas中根据列的值选取多行数据#选取等于某些值的行记录用==df.loc[df['column_name']==some_value]#选取某列是否是某一
在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值。常见的缺失值处理方式有,过滤、填充。一、缺失值的判断pan
EXCEL怎么取一个单元格里面的的值的中间某些字符,Excel单元格里面提取或去掉某些字符。软件名称:Excel2007绿色版精简免费[58MB]软件大小:58
在使用Excel表格处理数据时,有时需要找出表格中的重复值或者含有某些关键词的内容。如果表格数据太多,一个一个地找不仅费时,还容易漏。下面将介绍如何使用Exce