numpy.linalg.eig() 计算矩阵特征向量方式

时间:2021-05-22

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA>>> w, v = LA.eig(np.diag((1, 2, 3)))>>> w; varray([ 1., 2., 3.])array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))>>> w; varray([ 1. + 1.j, 1. - 1.j])array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])>>> a = np.array([[1, 1j], [-1j, 1]])>>> w, v = LA.eig(a)>>> w; varray([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]])>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])>>> # Theor. e-values are 1 +/- 1e-9>>> w, v = LA.eig(a)>>> w; varray([ 1., 1.])array([[ 1., 0.], [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章