时间:2021-05-22
在金融领域中,我们的y值和预测得到的违约概率刚好是两个分布未知的两个分布。好的信用风控模型一般从准确性、稳定性和可解释性来评估模型。
一般来说。好人样本的分布同坏人样本的分布应该是有很大不同的,KS正好是有效性指标中的区分能力指标:KS用于模型风险区分能力进行评估,KS指标衡量的是好坏样本累计分布之间的差值。
好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强。
1、crosstab实现,计算ks的核心就是好坏人的累积概率分布,我们采用pandas.crosstab函数来计算累积概率分布。
2、roc_curve实现,sklearn库中的roc_curve函数计算roc和auc时,计算过程中已经得到好坏人的累积概率分布,同时我们利用sklearn.metrics.roc_curve来计算ks值
3、ks_2samp实现,调用stats.ks_2samp()函数来计算。链接scipy.stats.ks_2samp¶为ks_2samp()实现源码,这里实现了详细过程
4、直接调用stats.ks_2samp()计算ks
输出结果:
KS1: [ 0.83333333]KS2: 0.833333333333KS3: 0.833333333333KS4: 0.833333333333当数据中存在NAN数据时,有一些问题需要注意!
例如,我们在原数据中增加了y_label=0,pred=np.nan这样一组数据
data = {'y_label':[1,1,1,1,1,1,0,0,0,0,0,0,0],
'pred':[0.5,0.6,0.7,0.6,0.6,0.8,0.4,0.2,0.1,0.4,0.3,0.9,np.nan]}
此时执行
ks1,crossdens=ks_calc_cross(data,['pred'], ['y_label'])
输出结果
KS1: [ 0.83333333]
执行
ks2=ks_calc_auc(data,['pred'], ['y_label'])
将会报以下错误
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
执行
ks3=ks_calc_2samp(data,['pred'], ['y_label'])
输出结果
KS3: 0.714285714286
执行
ks4=get_ks(data['pred'],data['y_label'])
输出结果
KS4: 0.714285714286
我们从上述结果中可以看出
三种方法计算得到的ks值均不相同。
ks_calc_cross计算时忽略了NAN,计算得到了数据正确的概率分布,计算的ks与我们手算的ks相同
ks_calc_auc函数由于内置函数无法处理NAN值,直接报错了,所以如果需要ks_calc_auc计算ks值时,需要提前去除NAN值。
ks_calc_2samp计算得到的ks因为searchsorted()函数(有兴趣的同学可以自己模拟数据看下这个函数),会将Nan值默认排序为最大值,从而改变了数据的原始累积分布概率,导致计算得到的ks和真实的ks有误差。
总结
在实际情况下,我们一般计算违约概率的ks值,这时是不存在NAN值的。所以以上三种方法计算ks值均可。但是当我们计算单变量的ks值时,有时数据质量不好,存在NAN值时,继续采用ks_calc_auc和ks_calc_2samp就会存在问题。
解决办法有两个
1. 提前去除数据中的NAN值
2. 直接采用ks_calc_cross计算。
以上这篇利用Python计算KS的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Python命令启动Web服务器实例详解利用Python自带的包可以建立简单的web服务器。在DOS里cd到准备做服务器根目录的路径下,输入命令:python-
python实现KS曲线,相关使用方法请参考上篇博客-R语言实现KS曲线代码如下:#######################PlotKS##########
Javascript实现计算器:系列文章:JS实现计算器详解及实例代码(一)Javascript实现计算器时间功能详解及实例(二)小型JavaScript计算器
Javascript计算器:系列文章:JS实现计算器详解及实例代码(一)Javascript实现计算器时间功能详解及实例(二)Javascript计算器->添加
本文实例讲述了Python利用matplotlib绘制约数个数统计图。分享给大家供大家参考,具体如下:利用Python计算1000以内自然数的约数个数,然后通过