时间:2021-05-22
在使用柱状图时,经常遇到需要多组数据进行比较的情况。
绘制单个数据系列的柱形图比较简单,多组数据柱状图绘制的关键有三点:
由上述可知,多组数据并列柱状图需要计算柱子x轴上的位置和x轴刻度标签。
因此,有两种实现方案:
下面使用第一种方法演示两组数据、三组数据、四组数据的并列柱状图。
使用方法一、方法二演示通用多组并列柱状图的创建方法。
上面的示例比较简易,有一些问题没有考虑。为了便于重复使用,下面的通用方法可调整x轴标签刻度步长、每组柱子的总宽度、每组柱子之间的间隙、组与组之间的间隙。
方法一
import matplotlibimport matplotlib.pyplot as pltimport numpy as nplabel = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0): ''' labels : x轴坐标标签序列 datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致 tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。 group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠 bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠 ''' # ticks为x轴刻度 ticks = np.arange(len(labels)) * tick_step # group_num为数据的组数,即每组柱子的柱子个数 group_num = len(datas) # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。 group_width = tick_step - group_gap # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和 bar_span = group_width / group_num # bar_width为每个柱子的实际宽度 bar_width = bar_span - bar_gap # baseline_x为每组柱子第一个柱子的基准x轴位置,随后的柱子依次递增bar_span即可 baseline_x = ticks - (group_width - bar_span) / 2 for index, y in enumerate(datas): plt.bar(baseline_x + index*bar_span, y, bar_width) plt.ylabel('Scores') plt.title('multi datasets') # x轴刻度标签位置与x轴刻度一致 plt.xticks(ticks, labels) plt.show() create_multi_bars(label, data, bar_gap=0.1)方法二
import matplotlibimport matplotlib.pyplot as pltimport numpy as nplabel = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0): ''' labels : x轴坐标标签序列 datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致 tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。 group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠 bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠 ''' # x为每组柱子x轴的基准位置 x = np.arange(len(labels)) * tick_step # group_num为数据的组数,即每组柱子的柱子个数 group_num = len(datas) # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。 group_width = tick_step - group_gap # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和 bar_span = group_width / group_num # bar_width为每个柱子的实际宽度 bar_width = bar_span - bar_gap # 绘制柱子 for index, y in enumerate(datas): plt.bar(x + index*bar_span, y, bar_width) plt.ylabel('Scores') plt.title('multi datasets') # ticks为新x轴刻度标签位置,即每组柱子x轴上的中心位置 ticks = x + (group_width - bar_span) / 2 plt.xticks(ticks, labels) plt.show()create_multi_bars(label, data[:3], bar_gap=0.1)声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
我们可以调用matplotlib绘制我们的柱状图,柱状图可以是水平的也可以是竖直的。在这里我先记录下竖直的柱状图怎么绘制在这里一般用到的函数就是bar#bar(
本文实例为大家分享了python使用matplotlib画柱状图、散点图的具体代码,供大家参考,具体内容如下柱状图(plt.bar)代码与注释importnum
使用matplotlib创建百分比堆积柱状图的思路与堆积柱状图类似,只不过bottom参数累计的不是数值而是百分比,因此,需要事先计算每组柱子的数值总和,进而求
柱状图是经常需要绘制的图,本文讲解如何在软件绘制的默认的柱状图的基础上对柱状图进行美化设计,得到一张漂亮的柱状图。1、录入数据。2、选择数据,插入柱状图,得到软
柱状图是经常需要绘制的图,本文讲解如何在软件绘制的默认的柱状图的基础上对柱状图进行美化设计,得到一张漂亮的柱状图。 1、录入数据。 2、选择数据,插入柱