时间:2021-05-22
用一条直线对数据进行拟合的过程称为回归。逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式。
公式表示为:
一、梯度上升法
每次迭代所有的数据都参与计算。
for 循环次数:
训练
代码如下:
import numpy as npimport matplotlib.pyplot as pltdef loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.readlines(): dataMat.append([1.0,line.strip().split()[0],line.strip().split()[1]]) labelVec.append(line.strip().split()[2]) return dataMat,labelVecdef Sigmoid(inX): return 1/(1+np.exp(-inX))def trainLR(dataMat,labelVec): dataMatrix = np.mat(dataMat).astype(np.float64) lableMatrix = np.mat(labelVec).T.astype(np.float64) m,n = dataMatrix.shape w = np.ones((n,1)) alpha = 0.001 for i in range(500): predict = Sigmoid(dataMatrix*w) error = predict-lableMatrix w = w - alpha*dataMatrix.T*error return wdef plotBestFit(wei,data,label): if type(wei).__name__ == 'ndarray': weights = wei else: weights = wei.getA() fig = plt.figure(0) ax = fig.add_subplot(111) xxx = np.arange(-3,3,0.1) yyy = - weights[0]/weights[2] - weights[1]/weights[2]*xxx ax.plot(xxx,yyy) cord1 = [] cord0 = [] for i in range(len(label)): if label[i] == 1: cord1.append(data[i][1:3]) else: cord0.append(data[i][1:3]) cord1 = np.array(cord1) cord0 = np.array(cord0) ax.scatter(cord1[:,0],cord1[:,1],c='red') ax.scatter(cord0[:,0],cord0[:,1],c='green') plt.show()if __name__ == "__main__": data,label = loadData() data = np.array(data).astype(np.float64) label = [int(item) for item in label] weight = trainLR(data,label) plotBestFit(weight,data,label)二、随机梯度上升法
1.学习参数随迭代次数调整,可以缓解参数的高频波动。
2.随机选取样本来更新回归参数,可以减少周期性的波动。
for 循环次数:
for 样本数量:
更新学习速率
随机选取样本
训练
在样本集中删除该样本
代码如下:
import numpy as npimport matplotlib.pyplot as pltdef loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.readlines(): dataMat.append([1.0,line.strip().split()[0],line.strip().split()[1]]) labelVec.append(line.strip().split()[2]) return dataMat,labelVecdef Sigmoid(inX): return 1/(1+np.exp(-inX))def plotBestFit(wei,data,label): if type(wei).__name__ == 'ndarray': weights = wei else: weights = wei.getA() fig = plt.figure(0) ax = fig.add_subplot(111) xxx = np.arange(-3,3,0.1) yyy = - weights[0]/weights[2] - weights[1]/weights[2]*xxx ax.plot(xxx,yyy) cord1 = [] cord0 = [] for i in range(len(label)): if label[i] == 1: cord1.append(data[i][1:3]) else: cord0.append(data[i][1:3]) cord1 = np.array(cord1) cord0 = np.array(cord0) ax.scatter(cord1[:,0],cord1[:,1],c='red') ax.scatter(cord0[:,0],cord0[:,1],c='green') plt.show()def stocGradAscent(dataMat,labelVec,trainLoop): m,n = np.shape(dataMat) w = np.ones((n,1)) for j in range(trainLoop): dataIndex = range(m) for i in range(m): alpha = 4/(i+j+1) + 0.01 randIndex = int(np.random.uniform(0,len(dataIndex))) predict = Sigmoid(np.dot(dataMat[dataIndex[randIndex]],w)) error = predict - labelVec[dataIndex[randIndex]] w = w - alpha*error*dataMat[dataIndex[randIndex]].reshape(n,1) np.delete(dataIndex,randIndex,0) return wif __name__ == "__main__": data,label = loadData() data = np.array(data).astype(np.float64) label = [int(item) for item in label] weight = stocGradAscent(data,label,300) plotBestFit(weight,data,label)三、编程技巧
1.字符串提取
将字符串中的'\n', ‘\r', ‘\t', ' ‘去除,按空格符划分。
string.strip().split()2.判断类型
if type(secondTree[value]).__name__ == 'dict':3.乘法
numpy两个矩阵类型的向量相乘,结果还是一个矩阵
c = a*bcOut[66]: matrix([[ 6.830482]])两个向量类型的向量相乘,结果为一个二维数组
bOut[80]: array([[ 1.], [ 1.], [ 1.]])aOut[81]: array([1, 2, 3])a*bOut[82]: array([[ 1., 2., 3.], [ 1., 2., 3.], [ 1., 2., 3.]])b*aOut[83]: array([[ 1., 2., 3.], [ 1., 2., 3.], [ 1., 2., 3.]])以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据。分享给大家供大家参考,具体如下:一、Logistic回归模型:二、Log
本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下。Logistic回归的主要目的:寻找一个非线性函数
逻辑回归模型逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预
最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。logistic分类是一个二分类问题,而我们的线性回归
本文实例讲述了Python实现的逻辑回归算法。分享给大家供大家参考,具体如下:使用python实现逻辑回归UsingPythontoImplementLogis