时间:2021-05-22
有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~
(numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库)
from numba import jit@jitdef t(count=1000): total = 0 for i in range(int(count)): total += i return total测试效果:
(关于__wrapped__ 见我的博文: 浅谈解除装饰器作用(python3新增) )
In [17]: %timeit -n 1 t.__wrapped__()1 loop, best of 3: 52.9 µs per loopIn [18]: %timeit -n 1 t()The slowest run took 13.00 times longer than the fastest. This could mean that an intermediate result is being cached.1 loop, best of 3: 395 ns per loop可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,
增大计算量可以看到使用numba加速后的效果提升更加明显,
In [19]: %timeit -n 10 t.__wrapped__(1e6)10 loops, best of 3: 76.2 ms per loopIn [20]: %timeit -n 1 t(1e6)The slowest run took 8.00 times longer than the fastest. This could mean that an intermediate result is being cached.1 loop, best of 3: 790 ns per loop如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。
%timeit -n 1 t(10)1 loop, best of 3: 0 ns per loop%timeit -n 100 t.__wrapped__(10)100 loops, best of 3: 1.79 µs per loop%timeit -n 1 t(1)The slowest run took 17.00 times longer than the fastest. This could mean that an intermediate result is being cached.1 loop, best of 3: 395 ns per loop%timeit -n 100 t.__wrapped__(1)100 loops, best of 3: 671 ns per loop以上这篇使用numba对Python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Numba是Python的即时编译器,在使用NumPy数组和函数以及循环的代码上效果最佳。使用Numba的最常见方法是通过其装饰器集合,这些装饰器可应用于您的函
使用Python写CUDA程序有两种方式:*Numba*PyCUDAnumbapro现在已经不推荐使用了,功能被拆分并分别被集成到accelerate和Numb
python+OpenCV图像礼帽图像礼帽也叫图像顶帽礼帽图像=原始图像-开运算图像得到噪声图像开运算:先腐蚀再膨胀使用对象:二值图像使用方法:morpholo
python实现取余操作的方法:可以利用求模运算符(%)来实现。求模运算符可以将两个数相除得到其余数。我们还可以使用divmod()函数来实现取余操作,具体方法
首先要说的是python中的除法运算,在python2.5版本中存在两种除法运算,即所谓的true除法和floor除法。当使用x/y形式进行除法运算时,如果x和