时间:2021-05-22
约定:
填充缺失数据
fillna()是最主要的处理方式了。
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])df1代码结果:
0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN
用常数填充:
代码结果:
0 1 2 0 1.0 2.0 3.0 1 100.0 100.0 2.0 2 100.0 100.0 100.0 3 8.0 8.0 100.0
通过字典填充不同的常数:
代码结果:
0 1 2 0 1.0 2.0 3.0 1 10.0 20.0 2.0 2 10.0 20.0 30.0 3 8.0 8.0 30.0
传入inplace=True直接修改原对象:
代码结果:
0 1 2 0 1.0 2.0 3.0 1 0.0 0.0 2.0 2 0.0 0.0 0.0 3 8.0 8.0 0.0
传入method=” “改变插值方式:
代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 NaN 5.0 2 6 5 5 NaN NaN 3 1 9 9 NaN NaN 4 4 8 1 5.0 9.0
df2.fillna(method='ffill')#用前面的值来填充代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 4.0 5.0 2 6 5 5 4.0 5.0 3 1 9 9 4.0 5.0 4 4 8 1 5.0 9.0
传入limit=” “限制填充个数:
代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 NaN 5.0 2 6 5 5 5.0 9.0 3 1 9 9 5.0 9.0 4 4 8 1 5.0 9.0
传入axis=” “修改填充方向:
代码结果:
0 1 2 3 4 0 6.0 6.0 2.0 4.0 1.0 1 4.0 7.0 0.0 0.0 5.0 2 6.0 5.0 5.0 5.0 NaN 3 1.0 9.0 9.0 9.0 NaN 4 4.0 8.0 1.0 5.0 9.0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
01、缺失值处理人工填充(数据集小,缺失值少)使用样本数据的均值或中位数填充Python缺失值处理实例代码:b、填充替换缺失值--fillna如果缺失值不可以占
在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值。常见的缺失值处理方式有,过滤、填充。一、缺失值的判断pan
处理方式:存在缺失值nan,并且是np.nan:删除存在缺失值的:dropna(axis='rows')替换缺失值:fillna(df[].mean(),inp
前言运用pandas库对所得到的数据进行数据清洗,复习一下相关的知识。1数据清洗1.1处理缺失数据对于数值型数据,分为缺失值(NAN)和非缺失值,对于缺失值的检
约定:importpandasaspdimportnumpyasnpfromnumpyimportnanasNaN滤除缺失数据pandas的设计目标之一就是使得