时间:2021-05-22
为了获取ROC曲线的最佳阈值,需要使用一个指标--约登指数,也称正确指数。
借助于matlab的roc函数可以得出计算。
% 1-specificity = fpr% Sensitivity = tpr;[tpr,fpr,thresholds] =roc(Tar',Val');RightIndex=(tpr+(1-fpr)-1);[~,index]=max(RightIndex);%RightIndexVal=RightIndex(index(1));tpr_val=tpr(index(1));fpr_val=fpr(index(1));thresholds_val=thresholds(index(1));disp(['平均准确率: ',num2str((RightIndexVal+1)*0.5)]);disp(['最佳正确率: ',num2str(tpr_val)])disp(['最佳错误率: ',num2str(fpr_val)])至此计算结束了。
补充拓展:利用阈值分割目标图像
一.全局阈值
方法一:OTSU方法
otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分。 所以可以在二值化的时候采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。
选择阈值k,把像素分为两类:
T=graythresh(f)即可实现用方法一计算归一化的阈值。
二.局域阈值
当背景照度不均匀时,全局阈值方法可能失效,此时,用局域变化的阈值函数T(x,y)分割图像f(x,y):
matlab实现程序:
clear all;close all;clc;I=imread('C:\Users\ASUS\Desktop\图像处理学习文件\大二下\使用阈值分割目标_15\Fig0926(a)(rice).tif');figureimshow(I)title('original image')k=graythresh(I);I1=im2bw(I,k);figureimshow(I1)se=strel('disk',10); %产生半径为10的圆盘形结构元素fo=imopen(I1,se); %用结构元素对灰度图像进行开运算figureimshow(fo)title('Opened image')f2=imtophat(I,se); %用原图像减去开运算图像,即对图像进行顶帽运算figureimshow(f2,[]) %显示顶帽运算结果title('Top-hat transformation')f2=im2double(f2);T=graythresh(f2);bw2=im2bw(f2,T); %对顶帽处理后的图像进行阈值处理figureimshow(bw2,[])title('Thresholded top-hat image') %显示阈值处理后的顶帽图像以上这篇浅谈ROC曲线的最佳阈值如何选取就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
1roc曲线的意义ROC曲线就是用来判断诊断的正确性,最理想的就是曲线下的面积为1,比较理想的状态就是曲线下的面积在0.8-0.9之间,0.5的话对实验结果没有
前言ROC(ReceiverOperatingCharacteristic)曲线和AUC常被用来评价一个二值分类器(binaryclassifier)的优劣。这
-AUC计算方法-AUC的Python实现方式AUC计算方法AUC是ROC曲线下的面积,它是机器学习用于二分类模型的评价指标,AUC反应的是模型对样本的排序能力
ug拉伸输入截面无效的原因如下: 1、选取草图曲线不封闭。 2、选取截面(曲面)有缺陷。 3、拉升方向与草图截面平行。 4、UG线条不能相交,不能出现未
3DMAX插件如何制作拖光效果?感兴趣得朋友不妨来看一下。 首先建立一个Text文字~ 将文字塌陷为样条曲线,进入点层级 选取一个点,使用Br