pandas 数据索引与选取的实现方法

时间:2021-05-22

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。

其对应使用的方法如下:
一. 行,列 --> df[]
二. 区域 --> df.loc[], df.iloc[], df.ix[]
三. 单元格 --> df.at[], df.iat[]

下面开始练习:

import numpy as npimport pandas as pddf = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))

1. df[]:

一维
行维度:
整数切片、标签切片、<布尔数组>
列维度:
标签索引、标签列表、Callable

df[:3]df['a':'c']df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)df[df['A']>0] # A列值大于0的行df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行df['A']df[['A','B']]df[lambda df: df.columns[0]] # Callable

2. df.loc[]

二维,先行后列
行维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable

df.loc['a', :]df.loc['a':'d', :]df.loc[['a','b','c'], :]df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)df.loc[df['A']>0, :]df.loc[df.loc[:,'A']>0, :]df.loc[df.iloc[:,0]>0, :]df.loc[lambda _df: _df.A > 0, :]df.loc[:, 'A']df.loc[:, 'A':'C']df.loc[:, ['A','B','C']]df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)df.loc[:, df.loc['a']>0] # a行大于0的列df.loc[:, df.iloc[0]>0] # 0行大于0的列df.loc[:, lambda _df: ['A', 'B']]df.A.loc[lambda s: s > 0]

3. df.iloc[]

二维,先行后列
行维度:
整数索引、整数切片、整数列表、<布尔数组>
列维度:
整数索引、整数切片、整数列表、<布尔数组>、Callable

df.iloc[3, :]df.iloc[:3, :]df.iloc[[0,2,4], :]df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)df.iloc[df['A']>0, :] #× 为什么不行呢?想不通!df.iloc[df.loc[:,'A']>0, :] #×df.iloc[df.iloc[:,0]>0, :] #×df.iloc[lambda _df: [0, 1], :]df.iloc[:, 1]df.iloc[:, 0:3]df.iloc[:, [0,1,2]]df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)df.iloc[:, df.loc['a']>0] #×df.iloc[:, df.iloc[0]>0] #×df.iloc[:, lambda _df: [0, 1]]

4. df.ix[]

二维,先行后列
行维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable
列维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable

df.ix[0, :]df.ix[0:3, :]df.ix[[0,1,2], :]df.ix['a', :]df.ix['a':'d', :]df.ix[['a','b','c'], :]df.ix[:, 0]df.ix[:, 0:3]df.ix[:, [0,1,2]]df.ix[:, 'A']df.ix[:, 'A':'C']df.ix[:, ['A','B','C']]

5. df.at[]

精确定位单元格
行维度:
标签索引
列维度:
标签索引

df.at['a', 'A']

6. df.iat[]

精确定位单元格

行维度:
整数索引
列维度:
整数索引

df.iat[0, 0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章