时间:2021-05-22
我们需要评估模型预测值来评估训练的好坏。
模型评估是非常重要的,随后的每个模型都有模型评估方式。使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估。
在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试、提高或者改变整个模型。但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它。
训练模型之后,需要定量评估模型的性能如何。在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集。
想评估一个模型时就得使用大批量数据点。如果完成批量训练,我们可以重用模型来预测批量数据点。但是如果要完成随机训练,就不得不创建单独的评估器来处理批量数据点。
分类算法模型基于数值型输入预测分类值,实际目标是1和0的序列。我们需要度量预测值与真实值之间的距离。分类算法模型的损失函数一般不容易解释模型好坏,所以通常情况是看下准确预测分类的结果的百分比。
不管算法模型预测的如何,我们都需要测试算法模型,这点相当重要。在训练数据和测试数据上都进行模型评估,以搞清楚模型是否过拟合。
# TensorFlowm模型评估## This code will implement two models. The first# is a simple regression model, we will show how to# call the loss function, MSE during training, and# output it after for test and training sets.## The second model will be a simple classification# model. We will also show how to print percent# classified correctly during training and after# for both the test and training sets.import matplotlib.pyplot as pltimport numpy as npimport tensorflow as tffrom tensorflow.python.framework import opsops.reset_default_graph()# 创建计算图sess = tf.Session()# 回归例子:# We will create sample data as follows:# x-data: 100 random samples from a normal ~ N(1, 0.1)# target: 100 values of the value 10.# We will fit the model:# x-data * A = target# 理论上, A = 10.# 声明批量大小batch_size = 25# 创建数据集x_vals = np.random.normal(1, 0.1, 100)y_vals = np.repeat(10., 100)x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)# 八二分训练/测试数据 train/test = 80%/20%train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))x_vals_train = x_vals[train_indices]x_vals_test = x_vals[test_indices]y_vals_train = y_vals[train_indices]y_vals_test = y_vals[test_indices]# 创建变量 (one model parameter = A)A = tf.Variable(tf.random_normal(shape=[1,1]))# 增加操作到计算图my_output = tf.matmul(x_data, A)# 增加L2损失函数到计算图loss = tf.reduce_mean(tf.square(my_output - y_target))# 创建优化器my_opt = tf.train.GradientDescentOptimizer(0.02)train_step = my_opt.minimize(loss)# 初始化变量init = tf.global_variables_initializer()sess.run(init)# 迭代运行# 如果在损失函数中使用的模型输出结果经过转换操作,例如,sigmoid_cross_entropy_with_logits()函数,# 为了精确计算预测结果,别忘了在模型评估中也要进行转换操作。for i in range(100): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%25==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))# 评估准确率(loss)mse_test = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})mse_train = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})print('MSE on test:' + str(np.round(mse_test, 2)))print('MSE on train:' + str(np.round(mse_train, 2)))# 分类算法案例# We will create sample data as follows:# x-data: sample 50 random values from a normal = N(-1, 1)# + sample 50 random values from a normal = N(1, 1)# target: 50 values of 0 + 50 values of 1.# These are essentially 100 values of the corresponding output index# We will fit the binary classification model:# If sigmoid(x+A) < 0.5 -> 0 else 1# Theoretically, A should be -(mean1 + mean2)/2# 重置计算图ops.reset_default_graph()# 加载计算图sess = tf.Session()# 声明批量大小batch_size = 25# 创建数据集x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(2, 1, 50)))y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))x_data = tf.placeholder(shape=[1, None], dtype=tf.float32)y_target = tf.placeholder(shape=[1, None], dtype=tf.float32)# 分割数据集 train/test = 80%/20%train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))x_vals_train = x_vals[train_indices]x_vals_test = x_vals[test_indices]y_vals_train = y_vals[train_indices]y_vals_test = y_vals[test_indices]# 创建变量 (one model parameter = A)A = tf.Variable(tf.random_normal(mean=10, shape=[1]))# Add operation to graph# Want to create the operstion sigmoid(x + A)# Note, the sigmoid() part is in the loss functionmy_output = tf.add(x_data, A)# 增加分类损失函数 (cross entropy)xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target))# Create Optimizermy_opt = tf.train.GradientDescentOptimizer(0.05)train_step = my_opt.minimize(xentropy)# Initialize variablesinit = tf.global_variables_initializer()sess.run(init)# 运行迭代for i in range(1800): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = [x_vals_train[rand_index]] rand_y = [y_vals_train[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%200==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))# 评估预测# 用squeeze()函数封装预测操作,使得预测值和目标值有相同的维度。y_prediction = tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, A))))# 用equal()函数检测是否相等,# 把得到的true或false的boolean型张量转化成float32型,# 再对其取平均值,得到一个准确度值。correct_prediction = tf.equal(y_prediction, y_target)accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))acc_value_test = sess.run(accuracy, feed_dict={x_data: [x_vals_test], y_target: [y_vals_test]})acc_value_train = sess.run(accuracy, feed_dict={x_data: [x_vals_train], y_target: [y_vals_train]})print('Accuracy on train set: ' + str(acc_value_train))print('Accuracy on test set: ' + str(acc_value_test))# 绘制分类结果A_result = -sess.run(A)bins = np.linspace(-5, 5, 50)plt.hist(x_vals[0:50], bins, alpha=0.5, label='N(-1,1)', color='white')plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, label='N(2,1)', color='red')plt.plot((A_result, A_result), (0, 8), 'k--', linewidth=3, label='A = '+ str(np.round(A_result, 2)))plt.legend(loc='upper right')plt.title('Binary Classifier, Accuracy=' + str(np.round(acc_value_test, 2)))plt.show()输出:
Step #25 A = [[ 5.79096079]]Loss = 16.8725Step #50 A = [[ 8.36085415]]Loss = 3.60671Step #75 A = [[ 9.26366138]]Loss = 1.05438Step #100 A = [[ 9.58914948]]Loss = 1.39841MSE on test:1.04MSE on train:1.13Step #200 A = [ 5.83126402]Loss = 1.9799Step #400 A = [ 1.64923656]Loss = 0.678205Step #600 A = [ 0.12520729]Loss = 0.218827Step #800 A = [-0.21780498]Loss = 0.223919Step #1000 A = [-0.31613481]Loss = 0.234474Step #1200 A = [-0.33259964]Loss = 0.237227Step #1400 A = [-0.28847221]Loss = 0.345202Step #1600 A = [-0.30949864]Loss = 0.312794Step #1800 A = [-0.33211425]Loss = 0.277342Accuracy on train set: 0.9625Accuracy on test set: 1.0以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、TensorFlow模型保存和提取方法1.TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对
使用tensorflow训练模型时,我们可以使用tensorflow自带的Save模块tf.train.Saver()来保存模型,使用方式很简单就是在训练完模型
TensorFlow模型保存/载入我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一
今天,我结合代码来详细介绍如何使用SciSharpSTACK的TensorFlow.NET来训练CNN模型,该模型主要实现图像的分类,可以直接移植该代码在CPU
2017年底,Tensorflow推出Lite版本,可实现移动端的快速运行,其中,一个很关键的问题,如何把现有分类模型(.pb)转换为(.lite)模型呢?其实