时间:2021-05-22
如果大家对这个生僻的术语不理解的话,那就先听小编给大家说个现实生活中的实际案例吧,虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?这么一个过程也可以称之为动态规划算法,下面就来看下详细内容吧。
从斐波那契数列看动态规划
斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1)
练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项
代码如下:
# _*_coding:utf-8_*_def fibnacci(n): if n == 1 or n == 2: return 1 else: return fibnacci(n - 1) + fibnacci(n - 2) print(fibnacci(10)) # 55如果看不懂上面模棱两可的介绍,还有下面直观的代码:
f(1) = 1f(2) = 1f(3) = f(1) + f(2) = 1+ 1 = 2f(4) = f(3) + f(2) = 2 + 1 = 3...f(n) = f(n-1) + f(n-2)实例扩展:
爬楼梯
假设你正在爬楼梯,需要n阶才能到达楼顶
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
如:
示例1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
解析:
如果给的两个示例看的不是特别清楚,你可以当阶梯为0,那么上楼梯方法0种这是必然,当阶梯只有1那么上楼梯方法只有1种:
当4个台阶:
输入:4
输出:4
1. 1阶 + 1阶 + 1阶 + 1阶
2. 2阶 + 2阶
3. 1阶 + 2阶 + 1阶
4. 2阶 + 1阶 + 1阶
5. 1阶 + 1阶 + 2阶
那么得到:
阶梯数 爬楼梯方法
0 0
1 1
2 2
3 3
4 5
...
如果感觉看的不明显可以推理一下5阶,6阶...
可以得到当我们想爬n阶楼梯,我们可以得到: p(n-1) + p(n-2) p为爬楼梯方法
提交LeetCode只击败了12.72%的人。通过优化
class Solution: def climbStairs(self, n: int) -> int: a,b,c = 0,1,2 if n == 1: return b if n == 2: return c while n>0: c = a + b a,b = b,c n -= 1 return cobj = Solution()result = obj.climbStairs(8)到此这篇关于python动态规划算法实例详解的文章就介绍到这了,更多相关python动态规划算法是什么内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下:#!/usr/bin/envpython#coding=utf-8def
本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下:在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进
利用动态规划算法,实现最短编辑距离的计算。复制代码代码如下:#encoding:utf-8#author:xujin#date:Nov12,2012#EditD
本文实例讲述了java动态规划算法——硬币找零问题。分享给大家供大家参考,具体如下:问题描述现在有3种硬币分别为:1元,5元,10元,现在给你63元,让你全部换
基于Python实现对求解最长回文子串的动态规划算法,具体内容如下1、题目给定一个字符串s,找到s中最长的回文子串。你可以假设s的最大长度为1000。示例1:输