时间:2021-05-22
如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:
AdaptiveAvgPool2d
CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]
Applies a 2D adaptive average pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
Parameters
output_size– the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.
Examples
>>> # target output size of 5x7>>> m = nn.AdaptiveAvgPool2d((5,7))>>> input = torch.randn(1, 64, 8, 9)>>> output = m(input)>>> # target output size of 7x7 (square)>>> m = nn.AdaptiveAvgPool2d(7)>>> input = torch.randn(1, 64, 10, 9)>>> output = m(input)>>> # target output size of 10x7>>> m = nn.AdaptiveMaxPool2d((None, 7))>>> input = torch.randn(1, 64, 10, 9)>>> output = m(input)>>> input = torch.randn(1, 3, 3, 3)>>> inputtensor([[[[ 0.6574, 1.5219, -1.3590], [-0.1561, 2.7337, -1.8701], [-0.8572, 1.0238, -1.9784]], [[ 0.4284, 1.4862, 0.3352], [-0.7796, -0.8020, -0.1243], [-1.2461, -1.7069, 0.1517]], [[ 1.4593, -0.1287, 0.5369], [ 0.6562, 0.0616, 0.2611], [-1.0301, 0.4097, -1.9269]]]])>>> m = nn.AdaptiveAvgPool2d((2, 2))>>> output = m(input)>>> outputtensor([[[[ 1.1892, 0.2566], [ 0.6860, -0.0227]], [[ 0.0833, 0.2238], [-1.1337, -0.6204]], [[ 0.5121, 0.1827], [ 0.0243, -0.2986]]]])>>> 0.6574+1.5219+2.7337-0.15614.7569>>> 4.7569/41.189225>>>以上这篇pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
简介自适应池化AdaptivePooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式:自适应最大池化AdaptiveMaxPooling
路径:https://pytorch.org/docs/master/nn.init.html#nn-init-doc初始化函数:torch.nn.init#-
卷积在pytorch中有两种实现,一种是torch.nn.Conv2d(),一种是torch.nn.functional.conv2d(),这两种方式本质都是执
pytorch中的权值初始化官方论坛对weight-initilzation的讨论torch.nn.Module.apply(fn)torch.nn.Modul
pytorch中的2D卷积层和2D反卷积层函数分别如下:classtorch.nn.Conv2d(in_channels,out_channels,kernel