时间:2021-05-22
如下所示:
with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z3,z3][tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]输出结果
[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>, <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>, <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>, <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]]with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z2,z3]tape.gradient(z, [w1, w2])输出结果
[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,
<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]
总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。
补充知识:Python/Numpy 矩阵运算符号@
如下所示:
A = np.matrix('3 1; 8 2')
B = np.matrix('6 1; 7 9')
A@Bmatrix([[25, 12], [62, 26]])以上这篇TensorFlow Autodiff自动微分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言简单介绍下python的几个自动求导工具,tangent、autograd、sympy;在各种机器学习、深度学习框架中都包含了自动微分,微分主要有这么四种:
微分销作为一种全新的网络营销模式,被很多电商微商用户所喜爱,该种全新的营销模式为很多商家带来了丰厚的收益,随着微信的火爆,微分销也是变得更加受欢迎了。那么微分销
matlab解微分方程组方法是: 1、首先,在matlab中解常微分方程有两种方法,一种是符号解法,另一种是数值解法。在本科阶段的微分数学题,基本上可以通过符
使用TensorFlow的一个优势是,它可以维护操作状态和基于反向传播自动地更新模型变量。TensorFlow通过计算图来更新变量和最小化损失函数来反向传播误差
微分销平台申请流程是这样的:选择一个适合企业产品的微分销平台,如销客多微分销系统。然后购买下来,将会有售后人员指导你如何操作这个系统。按照步骤即可拥有属于自己的