时间:2021-05-22
使用OpenCV和Python查找图片差异
flyfish
方法1 均方误差的算法(Mean Squared Error , MSE)
下面的一些表达与《TensorFlow - 协方差矩阵》式子表达式一样的
拟合 误差平方和( sum of squared errors)
residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE),
also known as 就我们所说的
RSS, SSR ,SSE表达的是一个意思
方法2 SSIM
structural similarity index measurement (SSIM) system
一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。
新建一个Python文件,命名为 image_diff.py
原文
Image Difference with OpenCV and Python
原理
根据参数读取两张图片并转换为灰度:
使用SSIM计算两个图像之间的差异,这种方法已经在scikit-image 库中实现
在两个图像之间的不同部分绘制矩形边界框。
代码如下 已编译通过
from skimage.measure import compare_ssim#~ import skimage as ssimimport argparseimport imutilsimport cv2# construct the argument parse and parse the argumentsap = argparse.ArgumentParser()ap.add_argument("-f", "--first", required=True, help="first input image")ap.add_argument("-s", "--second", required=True, help="second")args = vars(ap.parse_args())# load the two input imagesimageA = cv2.imread(args["first"])imageB = cv2.imread(args["second"])'''imageA = cv2.imread("E:\\1.png")imageB = cv2.imread("E:\\2.png")'''# convert the images to grayscalegrayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)# compute the Structural Similarity Index (SSIM) between the two# images, ensuring that the difference image is returned#structural similarity index measurement (SSIM) system一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。(score, diff) = compare_ssim(grayA, grayB, full=True)diff = (diff * 255).astype("uint8")print("SSIM: {}".format(score))# threshold the difference image, followed by finding contours to# obtain the regions of the two input images that differthresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)cnts = cnts[0] if imutils.is_cv2() else cnts[1]# loop over the contoursfor c in cnts: # compute the bounding box of the contour and then draw the # bounding box on both input images to represent where the two # images differ (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)# show the output imagescv2.imshow("Original", imageA)cv2.imshow("Modified", imageB)cv2.imshow("Diff", diff)cv2.imshow("Thresh", thresh)cv2.waitKey(0)使用方法
python image_diff.py –first original.png –second images/modified.png如果不想使用参数将参数代码部分直接变成
imageA = cv2.imread(“E:\1.png”) imageB = cv2.imread(“E:\2.png”)以上这篇利用OpenCV和Python实现查找图片差异就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了利用python和OpenCV实现图像拼接,供大家参考,具体内容如下python+OpenCV实现imagestitching在最新的Ope
支持linux正则表达式的工具有:grep:实现查找,sed,awk:都是流式编辑器,可以实现查找和替换,并且把替换的文本输出到屏幕上。grep工具grep[-
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。系统环境:Windows7+Python3.6.3+opencv3.4.
做了个Python的小练习,网上有人是利用PIL中的Image来实现的,觉得Opencv库挺方便的,于是利用Opencv库来实现了一下,代码如下:#-*-cod
上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下。做图像处理需要大批量的修