时间:2021-05-22
使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义):
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data)#有多少个测试集 n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0,n,mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1}/{2}".format(j, self.evaluate(test_data),n_test) else: print "Epoch {0} complete".format(j)其中training_data是训练集,是由很多的tuples(元组)组成。每一个元组(x,y)代表一个实例,x是图像的向量表示,y是图像的类别。
epochs表示训练多少轮。
mini_batch_size表示每一次训练的实例个数。
eta表示学习率。
test_data表示测试集。
比较重要的函数是self.update_mini_batch,他是更新权重和偏置的关键函数,接下来就定义这个函数。
这个update_mini_batch函数根据你传入的一些数据进行更新神经网络的权重和偏置。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
SGD随机梯度下降Keras中包含了各式优化器供我们使用,但通常我会倾向于使用SGD验证模型能否快速收敛,然后调整不同的学习速率看看模型最后的性能,然后再尝试使
本文实例为大家分享了python实现梯度下降算法的具体代码,供大家参考,具体内容如下简介本文使用python实现了梯度下降算法,支持y=Wx+b的线性回归目前支
python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下图示:importpandasaspdimportmatplotlib.pylabasp
本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下importnumpyasnpimportpandasaspdimpo
本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下使用工具:Python(x,y)2.6.6运行环境:Windows10问题:求