谈一谈数组拼接tf.concat()和np.concatenate()的区别

时间:2021-05-22

废话不多说啦,直接看代码吧!

tf.concat

t1 = [[1, 2, 3], [4, 5, 6]]t2 = [[7, 8, 9], [10, 11, 12]]tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]# tensor t3 with shape [2, 3]# tensor t4 with shape [2, 3]tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

numpy.concatenate

a = np.array([[1, 2], [3, 4]])b = np.array([[5, 6]])np.concatenate((a, b), axis=0)array([[1, 2], [3, 4], [5, 6]])np.concatenate((a, b.T), axis=1)array([[1, 2, 5], [3, 4, 6]])

以上这篇谈一谈数组拼接tf.concat()和np.concatenate()的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章